数学联邦政治世界观
超小超大

柯西留数定理 (2-1)

定理1(柯西留数定理):

f(z)在周线或复周线C所围的区域D内,除α₁,α₂,. . .,αₙ 外解析,在闭域ˉD=D+C上除α₁,α₂,. . .,αₙ 外连续,则fᴄf(z)dz=2πi∑ⁿₖ₌₁Resf(z)

ᴢ=αₖ

留数理论是柯西积分定理的进一步发展,如果函数f(x)在点a是解析的,周线C全在点a的某邻域内,根据前面讲的柯西积分定理 《如何证明复变函数论中的柯西积分定理》可知f(z)在周线C上的积分为0。这时的周线C必须是一个单连通区域内的周线,那么当a点是一个孤立奇点,这时包含周线C的区域不是一个单连通区域(有一个奇点a),往往f(z)在周线C上的积分不为0。

定义1(留数):

设函数f(z)以有限点a为孤立奇点,即f(z)在点a的某去心邻域 0<|z-a|<R内解析,则积分

1

── ∫Γf(z)dz,其中

2πi

Γ:|z – α|=ρ,0<ρ<R

这个积分叫作f(z)在点a的留数,记为

Resf(z)

z=α

《洛朗级数与泰勒级数有什么关系?》里,洛朗级数的系数

1 f(ζ)

cₙ=── ∫Γ ──── dζ(n=0,±1,. . .)

2πi (ζ – α)ⁿ⁺¹

令n=-1,则

1

c₋₁=── ∫Γf(ζ)dζ,所以

2πi

Resf(z)=c₋₁

z=α

定理1(柯西留数定理):

f(z)在周线或复周线C所围的区域D内,除α₁,α₂,. . .,αₙ 外解析,

在闭域ˉD=D+C 上除α₁,α₂,. . .,αₙ 外连续,则

∫ᴄf(z)dz=2πi∑Resf(z)

ₖ₌₁ z=αₖ

证明:

画圆周|Γₖ:|z – αₖ|=ρₖ(k=1,2,. . .,n)使圆周和内部都包含于D,且彼此不相交,应用复周线柯西定理得

∫ᴄf(z)dz=∑∫Γₖf(z)dz,由定义得

ₖ₌₁

∫ᴄf(z)dz=2πi∑Resf(z)

ₖ₌₁ z=αₖ

现在来关注在无穷远点的留数。

定义2(无穷远点的留数):

设∞ 为函数f(z)的一个孤立奇点,即f(z)在去心邻域

N – ∞:0 ≤ r<|z|<+∞ 内解析,则

1

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

ABO:被alpha养子标记了 连载中
ABO:被alpha养子标记了
罚予
*当曾经养过一段时间的宋默祁,看着自己的眼神越来越不对劲时,唐莫礼才意识到对方早已对自己图谋不轨。【年下双男主:唐莫礼Ox宋默祁A】唐莫礼:......
22.0万字8个月前
邪王独宠:腹黑逆天大小姐 连载中
邪王独宠:腹黑逆天大小姐
孤独若溪
【女主穿越vs渣女穿越,女强男更强,一对一双宠文,马甲,腹黑,天才,空间,打脸,逆袭嫡女,小可爱们快来收藏吧❤️】想她堂堂异世闻风丧胆的世界......
33.7万字8个月前
阿柒的艰难求生日常 连载中
阿柒的艰难求生日常
苏白月
阿柒一条蛇妖,它的人生目标是——飞升成仙。无奈的是它在刚有灵识的时候,它被一个小破孩救了。因此它欠下了一份因果……阿柒的师傅是天界的大佬,原......
19.3万字8个月前
蜜虫 连载中
蜜虫
独行飞侠
所有蜜虫中最难养的是续命蜜。它是以人的心头血为食,以最痛苦的记忆为趣,养够81天,在入他体内方可续命。从此他可有二十年逍遥时光,而他醒来却不......
10.7万字8个月前
逐星传 连载中
逐星传
小玄幻
『雾月楼』雾失楼台,月迷津渡励志为主,收藏需谨慎,放心入坑,大结局,写完微尘记再续。可能时间有点久。求收藏,求评论,爱你们,么么哒。做人要低......
18.4万字8个月前
这一世,他和她 连载中
这一世,他和她
樱风剑缘
上一世,他和她,黑衣黑发,蓝衣黑发。桃花树下,一同抚琴。这一世,“这一世,我定会护她周全,不让她受到一丝一毫伤害……”“师父……”“我在。”......
7.4万字8个月前