数学联邦政治世界观
超小超大

数学大厦轰然倒塌

3=0的经典伪证,似乎也是来自民科吧。

说这个伪证并不在于其本身的逻辑谬误,而是绝大多数人对于这个伪证的证伪方式也是伪证。换句话说,绝大多数人实际上并不能真正指出3=0 的错误之处,而只是单纯地依靠权威的结论去强行定义它是错误的。

不信大家可以尝试一下。

我们来看一个简单的二次方程。

x²+x+1=0 (1)

首先,我们可以将x=0 代入方程中,得到原方程不成立,所以 x=0 必定不是方程的根。

∵x=0

∴x²+x+1=1 ≠ 0

∴x ≠ 0

由于x ≠ 0 , 我们可以在等式两侧同时除以不为0的因式 x ,则有:

∵x ≠ 0

(1) 1

∴ ── ⇔ x+1+─=0

x x

1

∴x+1+─=0 (2)

x

又因为对于(1)式来说,我们可以通过移项的方式,得到以下关系:

x+1=–x² (3)

我们将(3)式代入(2)式之中,可以得到:

1

–x²+─=0 ⇔ –x³+1=0 (4)

x

对于(4)式来说,不难验证,x=1 为该方程的一个解。

我们再将x=1 代入原方程,则我们可以得到:

1²+1+1=0 ⇒ 3=0

从而,数学大厦轰然倒塌!

现在大家可以思考这样几个问题:

1. 直接将(4)式的解代回(1)式后,原有等式不成立意味着什么?

2. 在恒等变形的哪一步中引入了增根?为什么会引入增根?

3. 这一增根的引入是任意的吗?换句话说,如果我想写一个7=0的伪证,能通过类似的方式做到吗?

4. 此伪证的产生和原方程没有实数解有关系吗?换句话说,如果保证方程在实数范围内有解,按照类似的上述操作,就能保证不会引入不符合原方程的增根吗?

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

自由星 连载中
自由星
云西西西子
欢迎来到我的宇宙。
2.5万字9个月前
pel:团宠月月 连载中
pel:团宠月月
彤摆烂
看到了我想写一写不要骂人物可以骂我如果不想看就请走网图.如侵权请联系全部是私设pel选手x被家长遗弃的萌娃懒,看文随缘如果你看到了祝您生活愉......
1.1万字9个月前
世界笔记(无限流) 连载中
世界笔记(无限流)
椰鬃
这是一本笔记,请谨慎阅读。嘶哑雨夜中,一场疑似恐怖袭击悄然上演,轰鸣车厢中一眼望见他们的头子。牧青并未受伤,似乎作为人质被拷上锁链,逼上另一......
0.9万字8个月前
兽之镇 连载中
兽之镇
小小阿玖
“我做了一个梦,一个不想醒来的梦……”我很喜欢最近流行的一句话“有的人用童年治愈一生而有的人却用一生来治愈童年”我也曾渴望着我能像别的孩子一......
2.7万字8个月前
神印聊天室三 连载中
神印聊天室三
180***428_5982592670
聊天发图
0.1万字8个月前
撞妖 连载中
撞妖
月下小溪1
十八年前,老妈抱着我疯疯癫癫得跑进了大山之中。十八年后,为了照顾一家五口,我成了山里没有人敢娶的女人。直到撞上了一只妖……本书数字版权由“讯......
200.2万字8个月前