数学联邦政治世界观
超小超大

范畴逻辑(四) (4-4)

从技术的角度来说,一阶逻辑的各个片段的对偶在数学上会更加复杂的其中一个原因是因为我们对应考虑的范畴阶数上了一个层次。在上一篇文章中我们提到过,命题逻辑可以看作是 0-阶范畴的对应,而描述其性质则需要用 1-阶范畴的语言,因此相对简单;而一阶逻辑则对应着 1-阶范畴,因此想要原原本本地描述其性质我们需要某种 2-阶范畴的语言,或者采用类似层 [sheaf] 或者堆 [stack] 的语言来表述。假设我们有一个一般的一阶逻辑系统𝕋 ,其对应了一个语形范畴 C𝕋 其一般意义上的所有模型应该是所有某一类从 C𝕋 到 Set 的函子所对应的范畴

Mod(𝕋)≅[C𝕋,Set]ᴄ,(9)

其中小写的角标c 表示满足某种条件的函子。此时, 𝕋 的模型的信息不仅是一个简单的集合(其实在命题逻辑的情形也不只是一个简单的集合而有一个序,但这个序的信息已经完全被包含在拓扑的特化序 [specialisation order] 中了),而是还包含模型之间的态射信息。此时,不像命题逻辑在 Mod(B) 上赋予一个拓扑我们便可以重构出 B 的信息,在一阶的情况下显然仅仅考虑拓扑的信息已经不足以构建语形和语义之间的对偶了。

其他的许多对偶也有类似的情形。如果大家熟悉交换环的仿射概形的构造,一个交换环R 的仿射概形不仅仅包含了一个拓扑空间 Spec(R) ,称为 R 的谱,在这个空间上还有一个交换环层 [sheaf of rings] 使得 Spec(R) 变成了一个赋环空间 [ringed space]。换而言之,单纯的一个拓扑空间结构并不足以重构还原出一个交换环所拥有的全部信息形成一个对偶,我们需要这个空间上更多的层 [sheaf] 的结构。这也是为何层论 [sheaf theory] 在现代代数几何中非常有重要的地位。

回到我们一阶的情形,面对Mod(𝕋) 这样的一个范畴对象在已有的文献中有不同的近路在其上赋予更多的结构使得我们能够还原出 C𝕋 的信息,构成语形与语义的对偶。Makkai 在[9]中在这个范畴上定义了超积 [ultra-product] 的结构使得其成为一个超范畴 [ultra-category];使用这一套语言,Makkai 重构了经典一阶逻辑语形和语义之间的对偶。此后 Lurie 改进了 Makkai 原本对超范畴的定义得到了更加简洁的证明一阶逻辑语形与语义对偶的结论,可参见 Lurie 主页上的讲义 Ultracategories。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

十二星座:方寸死斗 连载中
十二星座:方寸死斗
简思达江斯特
〖星座文内含cp向注意避雷〗因为杀死所爱之人而被困在噩梦里无法解脱这一次,饱受折磨的少年做了变成女孩子的梦(有刀哈,心理承受能力较差的老婆酌......
1.0万字6个月前
星拟:正在努力加载中…… 连载中
星拟:正在努力加载中……
桶中加尿泼谁谁发疯
正在努力拉屎中……应该可以算是oc
0.2万字6个月前
王一博:万年情劫之今生前世 连载中
王一博:万年情劫之今生前世
love小狮子v小兔纸
九尾狐妖的前世版本,姊妹篇。
26.4万字6个月前
快穿之梦魇绝镇 连载中
快穿之梦魇绝镇
晏宝川
这是一场有关生死的xx准备好了吗?开始了一切在这都开始了
0.5万字6个月前
系统逼她攻略反派大boss 连载中
系统逼她攻略反派大boss
湘水恒温
第一世界:娘亲的蓝颜总想拧断我脖子(已开启)方茶茶在自己葬礼上吃香喝辣时,意外激活了一个穿越重生系统。  系统:想要活下去,跟我刷boss去......
12.1万字6个月前
冰窟求生:我有隐藏提示系统 连载中
冰窟求生:我有隐藏提示系统
月落之海
『已完结』全国人民来到了冰窟求生的世界,而我们的主角却有隐藏提示,但他似乎跟自己有很大的牵连......咳咳....多说无益,请移正文
4.0万字6个月前