Ceva's theorem
If the straight lines joining the vertices A,B,C of a triangle to a point O of its plane meet the opposite sides at P,Q,R,then
BP CQ AR
── · ── · ──=1
PC QA RB
pf:ThroughO draw a line LMN parallel to BC , meeting BC at L∞ , CA at M,AB at N . Then the ranges (BPL∞C),(QAMC) are perspective from O. Hence
BP · L∞C BP QA · MC
─────=──=────
BC · L∞P BC QC · MA
Similarly(CPL∞B),(RANB) are perspective from O . Hence
CP · L∞B CP RA · N∞B
─────=──=─────
CB · L∞P CB RB · N∞A
⇒
BP QA CM RB AN
──=── · ── · ── · ──
PC CQ MA AR NB
Notice that AN:NB=AM:MC,we're done.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。