数学联邦政治世界观
超小超大

数学理论(五) (6-4)

当pᵢ=28c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ≠2、7、28c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1).

(i、c∈N,v=1,2…6)

又,s以内有1/2的pᵢ=28c+bᵥ;

经计算,i>167时,r₇=t₀t₁…tᵢ=1.96…

因此,集合A={x|x=a²+7,(a∈N)}的参照常数为r₇=1.96.

经粗略计算,r₁=r₄=1.37,r₂=r₈=0.71,

r₃=1.11,r₅=0.52,r₆=0.71,r₇=1.96,

r₀=r₋₁=r₋₄=0,r₋₂=r₋₈=1.89,r₋₃=1.38,

r₋₅=1.78,r₋₆=1.04,r₋₇=0.75.

(连续足够多个rₙ的均值为1)

集合B的参照常数rₙ的计算方法如下:

1、n为偶数时,集合B中的元素均为偶数,rₙ=0.

2、n为奇数时,令|4n-1|以内存在2u个正整数与|4n-1|互素,集合B的正元素中包含的与|4n-1|互素的素因数除以|4n-1|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|4n-1|时,令tᵢ=1;

当pᵢ=|4n-1|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|4n-1|且pᵢ≠|4n-1|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|4n-1|c+bᵥ;

i足够大时,rₙ=2t₁t₂…tᵢ=常数.

(i∈N+,c∈N,v=1,2…u)

另外,如果|4m-1|=|4n-1|b²(b为正奇数);

b不存在与|4n-1|互素的奇素因数,则rₘ=rₙ;

b存在与|4n-1|互素的奇素因数d₁,d₂…dₓ,

当dᵢ=|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

经粗略计算,r₁=1.56,r₀=r₋₂=r₂=0,

r₃=1.01,r₋₁=3.43,r₋₃=1.61.

(连续足够多个rₙ的均值为1)

集合C的参照常数rₙ的计算方法如下:

1、n=-(b²+b)/2(b∈N)时,集合C的表达式偶数项与奇数项能够分开进行因式分解,rₙ=0.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

海棠祭相思-d432 连载中
海棠祭相思-d432
骨逝
0.8万字1年前
哀伤的星际复仇天使 连载中
哀伤的星际复仇天使
摇滚浑蛋
俐莎是个未来世界特种部队成员,在执行任务时被找到支离破碎。她与魔鬼签了黑色协议后变成了半机械人,回到银河系找坏人报仇。
2.6万字1年前
幻城之岚裳 连载中
幻城之岚裳
常安90137
讲得是岚裳是护灵之命为守护三界的生灵而献祭魂灵和樱空释经历三世情劫
3.6万字1年前
天舞纪之秋月 连载中
天舞纪之秋月
希糯柒
本文根据电视剧《天舞纪》改编
5.5万字1年前
再世重逢 连载中
再世重逢
该用户已注销
我的世界已经分崩离析,我的痛苦像永恒一样无尽。“对不起,不能陪着你了,请杀了我,然后好好的活下去……”“我想……再见他一面,无论我会付出怎样......
26.8万字1年前
我被联盟打了劫 连载中
我被联盟打了劫
困惑的状元
码字瞎编能手——顾桀桀意外穿越未来,被一个奇葩联盟打了劫。“加入我们,拯救光明!”……噗!太中二了吧!顾桀桀从此加入这个不靠谱联盟,探案做任......
3.6万字1年前