数学联邦政治世界观
超小超大

数学理论(四) (2-2)

另外,当集合X的表达式中某些项的系数不为整数时,若集合X中的正元素分布符合上述第2条,则集合X的rₙ值计算方法同上.

㈤、论梅森素数的分布.

型如2ᵃ-1(a∈N+)的素数称为梅森素数.

且令:集合X={x|x=2ᵃ-1,(a∈N+)}={1,3,7,15,31,63,127,255…}.

且令:集合X中的元素依次是x₁,x₂,x₃…

则有:xₙ₊₁=2xₙ+1;xₘₙ=2ᵐⁿ-1=(2ᵐ-1)

[2⁽ⁿ⁻¹⁾ᵐ+2⁽ⁿ⁻²⁾ᵐ…+2ᵐ+1]. (n、m∈N+)

因此,n为合数时,xₙ同样为合数.

且令:集合X中的元素除以某个奇素数p所得余数依次组成序列K={k₁,k₂,k₃…}.

则有:kₙ≠p-1;

2kₙ+1<p时,kₙ₊₁=2kₙ+1;

2kₙ+1≥p时,kₙ₊₁=2kₙ+1-p.

因此,序列K中互异的元素小于p个且连续p个元素中将存在相同的元素.

且令:kₙ=kₘ. (n<m,m-n<p)

则有:kᵢ=k₍ᵢ₊ₘ₋ₙ₎. (i∈N+)

因此,序列K中的元素存在周期性分布规律,周期长度小于p,周期内的元素互异,第一个元素是1,最后一个元素是0.

当m∈P,n∈N+时,集合X中的元素满足:当且仅当m=2时,第mn个元素能被3整除;当且仅当m=3时,第mn个元素能被7整除;当且仅当m=5时,第mn个元素能被31整除;当且仅当m=7时,第mn个元素能被127整除;当且仅当m=11时,第mn个元素能被23、89整除 …

分析整理,可按下述方法设定:

1、当集合X中被pᵢ(pᵢ=5,11,13,17,19,29…)整除的所有元素都能够被某个小于pᵢ的素数整除时,这些素数对应yᵢ=1.

2、当pᵢ(pᵢ=2,3,7,23,31…)不是第1条中括号内的素数时,且令集合X中与pᵢ互素的元素的分布比例为yᵢ.

则有:yᵢ=1或者yᵢ=(p-1)/p.

(p∈P,p<pᵢ,所有yᵢ≠1的值互异)

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:所有的rᵢ>1. (猜测i足够大时,rᵢ→2)

经计算,s以内集合X中元素的能量和为

e=㏑㏑s/㏑2;因此,s以内梅森素数的数量接近或大于㏑㏑s/㏑2;存在无穷多个梅森素数;如果猜测成立,则s(足够大)以内梅森素数的数量接近2㏑㏑s/㏑2.

同理可证:

s以内斐波那契数列中的素数数量接近或大于1.5㏑㏑s/㏑g. [g=(1+√5)/2=1.618…]

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

镜中蝶笙 连载中
镜中蝶笙
惊羽蝶笙
杀戮游戏悄然诞生,游走在生命的边缘,斩断荆棘将利刃刺向神明……(分数多以be为结局,注意避雷哦)
0.8万字1年前
关于废物学生成为了魔法少女这档事 连载中
关于废物学生成为了魔法少女这档事
健忘的小明
我,一个倒霉的初三生,成绩中等偏下,个子只有一米六,我平平无奇,一点也不特殊,也从不奢望自己可以成为别人眼中最特殊的那一个,我原以为会这么平......
9.0万字1年前
穿书成恶毒女配怎么办 连载中
穿书成恶毒女配怎么办
美颜盛世
【已经签约】穿进修仙文里的恶毒女配变成了万人迷。不过女主(他是男的)是怎么回事?你不缠着男主,目光灼灼的看着我干什么?男主们呐?你们不为女主......
23.9万字1年前
猫武士群聊班 连载中
猫武士群聊班
芯X儿
1.8万字1年前
航猪意外黑化 连载中
航猪意外黑化
芳心和三郎
妈妈说过,透剧的不是好孩子。
1.2万字1年前
红尘缘:诉相思苦,道情深海 连载中
红尘缘:诉相思苦,道情深海
知否,你与她无缘有情
东陵有道:“圣人云,红尘斩不断,理还乱。”太阿道曰:“有人云,君子当律己,无方不成正。”沉纱曰道:“我云,天大道理,一律不通。”第一卷《缘起......
6.8万字1年前