数学联邦政治世界观
超小超大

多项式环的理想

【artin代数_第二版_11.3.11】 R 是环, l 是多项式环 R[x] 的理想,它包含的所有非零元素的阶的最小值为 n,证明或反驳(prove or disprove): l 是主理想 ⇔ l 包含 n 阶首一多项式。

proof of⇐ : p(t)=tⁿ+rₙ₋₁tⁿ⁻¹+. . .rₒ ∈ l ,那么显然 (p(t)) ⊂ l ; 所有 α(t) ∈ l 都可以通过除法表示为 α(t)=p(t)q(t)+r(t) , 且 r(t) ∈ l ,所以 r(t)=0 ,所以 l ⊂ (p(t)) 。

⇐ ⇒

counterexample of⇒ : R=Z/4 , l=(2x) ,那么 x∉l 。

F 是域,多项式环 F[x] 的理想 l 都是主理想,可以由 l 中最低阶非零多项式生成,若这个最低阶多项式是首一多项式(monomial),则它是唯一的。

pf:假设p(t) 是 l 中最低阶多项式,那么 (p(t)) ⊂ l,而所有 α(t) ∈ l 都可以通过除法表示为 α(t)=p(t)q(t)+r(t) , 且 r(t) ∈ l,所以 r(t)=0 ,所以 l ⊂ (p(t)) 。这里 F[x] 和 R[x] 的区别就是非首一多项式 p(t) 也可以做除法,所以 F[x] 的理想可以这么简单。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

芙蓉花开天子心 连载中
芙蓉花开天子心
中国天子
芙蓉花开天子心。芙蓉花开芙蓉心。紫薇花开紫薇心。紫薇花开喜欢吗?兰心这一生一世一辈子你喜欢我像芙蓉花开芙蓉心一样的美吗?兰贞这一生一世一辈子......
10.0万字12个月前
幻城之岚裳 连载中
幻城之岚裳
常安90137
讲得是岚裳是护灵之命为守护三界的生灵而献祭魂灵和樱空释经历三世情劫
3.6万字12个月前
反派大佬怀了我的崽 连载中
反派大佬怀了我的崽
江上不知行
gb男生子,穿书沙雕向
1.4万字12个月前
彼岸花杀 连载中
彼岸花杀
韬家夏陌
一位女杀手,因为救一朝好心,救了一个老婆婆,得到了血泪,引来杀身之祸。死后与自己留在玄武大陆的灵魂合二为一……(作者我是一个追星女孩,偶尔会......
15.7万字12个月前
图腾领域:怨冥组织 连载中
图腾领域:怨冥组织
栀风永月
自己康康吧
7.7万字12个月前
执笔人 连载中
执笔人
执笔画海棠
神魔大战,三千灵器散落人间,有心之人将之炼化,妄图以此统一天下,一时之间,百姓陷入水深火热之中,
1.4万字12个月前