数学联邦政治世界观
超小超大

高斯引理 (5-1)

高斯引理

两个本原多项式的乘积还是本原多项式。

设f(x)=αₙxⁿ+· · ·+α₁x+α₀,g(x)=bₘxᵐ+· · ·+b₁x+b₀是两个本原多项式。

设h(x)=f(x)g(x)=cₙ₊ₘxⁿ⁺ᵐ+· · ·+c₁x+c₀,其中cₛ=∑αᵢbⱼ,

ᵢ₊ⱼ₌ₛ

s=0,1,· · ·,n+m。

(反证法)

如果h(x)不是本原多项式,则存在一个素数p,使得p|cₛ,s=0,1,· · ·,n+m。

因为f(x),g(x)是本原多项式,p不能整除f(x)和g(x)的每一项系数,设

p|α₀,p|α₁,· · ·,p|αₖ₋₁,p∤αₖ

p|b₀,p|b₁,· · ·,p|bₗ₋₁,p∤bₗ

cₖ₊ₗ=αₖ₊ₗb₀+· · ·+αₖ₊ₗbₗ₋₁+αₖbₗ+αₖ₋₁bₗ₊₁+· · ·+α₀bₖ₊ₗ

p∤αₖ且p∤bₗ,p是素数,则p∤cₖ₊ₗ,与p整除每个cₛ矛盾。

【请你依据给定的信息和文本给出更加详细,并且不跳过任何一步的证明,请掌握所有的细节。如此证明的所有理由都不能跳过。】

【claude-3-5-sonnet-20240620】

好的,我会按照您的要求,提供一个更加详细的证明,不跳过任何步骤和理由。

高斯引理定理的证明:

给定:

1. f(x)=αₙxⁿ+. . .+α₁x+α₀是一个本原多项式

2. g(x)=bₘxᵐ+. . .+b₁x+b₀是另一个本原多项式

3. h(x)=f(x)g(x)=cₙ₊ₘxⁿ⁺ᵐ+. . .+c₁x+c₀

其中cₛ=∑αᵢbⱼ,s=0,1,. . .,n+m

ᵢ₊ⱼ₌ₛ

我们将使用反证法来证明h(x) 也是本原多项式。

步骤1: 假设相反

假设h(x) 不是本原多项式。

步骤2: 推导假设的含义

根据本原多项式的定义,如果h(x) 不是本原多项式,那么【存在一个素数 p】,使得 p 可以整除 h(x) 的所有系数。

即:p|cₛ,对于所有 s=0,1,. . .,n+m

步骤3: 分析f(x) 和 g(x) 的系数

因为f(x) 和 g(x) 是本原多项式,所以 p 不可能同时整除它们的所有系数。

我们可以找到f(x) 中【第一个】【不被 p 整除】的系数,设它的指数为 k:

p|α₀,p|α₁,. . .,p|αₖ₋₁,p∤αₖ

同样,我们可以找到g(x) 中第一个不被 p 整除的系数,设它的指数为 l:

p|b₀,p|b₁,. . .,p|bₗ₋₁,p∤bₗ

步骤4: 分析h(x) 的系数 cₖ₊ₗ

根据cₛ 的定义,我们有:

cₖ₊ₗ=αₖ₊ₗb₀+. . .+αₖ₊₁bₗ₋₁+αₖbₗ+αₖ₋₁bₗ₊₁+. . .+α₀bₖ₊ₗ

步骤5: 分析cₖ₊ₗ 的可除性

在cₖ₊ₗ 的所有项中:

• αₖbₗ 是唯一一项 p 不整除的,因为 p∤αₖ 且 p∤bₗ【……素数 p 对两个系数均不整除,故而绝非二者素因子分解那一堆中的因子,对于二者乘积后的大堆素因子拼盘仍然不在其中,故而不整除二者乘积】

• 对于所有 i<k,p|αᵢ

• 对于所有 j<l,p|bⱼ

• 因此,除了 αₖbₗ 之外的所有项都能被 p 整除

步骤6: 得出矛盾

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

细水鱼儿出,微风燕子斜 连载中
细水鱼儿出,微风燕子斜
C随and天赋型选手
卷入系统的任务,我们到底记不记得现实大女主文,团队赛
5.0万字8个月前
冲破次元只为你 连载中
冲破次元只为你
允儿蒙
声明:“故事内容纯属虚构,与真实历史无关,如有雷同,纯属巧合”(【QM.书韵文社】采一滴书韵之露养在心中,掬一抹笔墨之泪藏在眸中)我叫墨白,......
65.5万字8个月前
假如潜行是女的1 连载中
假如潜行是女的1
悦月来喽
0.0万字8个月前
狐妖嗜宠——第一卷 连载中
狐妖嗜宠——第一卷
该用户已注销
现代女杀手,一手医术可救人,一手暗器杀人无数。一次聚会后被一口水噎死了?穿越到了一个神秘的世界,遇见了一只可爱的小狐狸,还有各种形形色色的神......
12.5万字8个月前
绝宠娇妃之凰兮凰兮 连载中
绝宠娇妃之凰兮凰兮
柒月楠栀
 (已完结) 临渊羡鱼不如退而拥你。  一见钟情,从此他痴心不二,为她赴汤蹈火。  天之骄子二殿下寒清or灵潭化身水仙暮紫凝  苍羽宫中,灵......
10.1万字8个月前
封梦难寻 连载中
封梦难寻
骨希蝶子
生活在一个利益至上又危险的世界,因为每天一直会做一个相同的梦,于是决定去找梦,最后弃梦……
5.8万字8个月前