约化公理、无穷公理及选择公理的使用,对整个逻辑的观点,即数学可以从逻辑推导出来,提出了质疑:逻辑与数学的区别在哪儿呢?
罗素是坚定的逻辑派观点的捍卫者。有一个时期他为他和怀特海在《原理》第二卷第一版中所做的一切作辩解,在《数学哲学导论》(1919年)中他说:
(数学和逻辑的)同一性的证明,当然是细节问题。从逻辑和数学共同接受的前提出发,用演绎的方法得到显然是数学的结果,我们就会看出,不可能画出一条清晰的分界线,其左边是逻辑,右边是数学。如果还有些人不肯承认数学和逻辑的同一性,我将提请他指出,在《数学原理》的一系列定义和推导中,他们认为在哪儿是逻辑的结束,哪儿是数学的开始。显然,任何答案都不可能是准确的。P226
然而,有很大一部分经典数学的推导用到了它们,在《原理》第一卷的第二版(1937年)中,罗素已放弃了最早的观点。他说:“什么是逻辑的原理,已经变得相当任意了”。无穷公理和选择公理“只能通过经验来证实或否证”。不过,他仍然坚持逻辑和数学是统一体。P227
对于整个逻辑派的观点,还有一种严厉的批评。即:假如逻辑派的看法是正确的,那么,全部数学就是一种纯形式的,逻辑演绎的科学。它的定理遵循思维的规律,而思维规律所做的精巧的演绎,是如何表示广泛的自然现象,数的运用、空间几何、声学、电磁学以及力学的,则似乎无法解释。魏尔就此讥讽逻辑派是从无到无。
在同一篇随笔中,彭加勒还说:
逻辑主义必须加以修正,而人们一点也不知道还有什么东西可以保留下来,毋需多说,这里指的是康托尔主义和逻辑主义;真正的数学,总有它实用的目的,它会按照它自己的原则不断地发展,而不理会外面狂烈的风暴,并且它将一步一步地去追寻它惯常的胜利,这是一定的,并且永远不会停止。
另一种对逻辑派的严肃批评断言,在数学的创造中,感性的或想象的直觉必须提供新的概念,而不管它是否来自于经验。否则的话,新的知识从哪里产生呢?但是在《原理》中,所有的概念都规约为逻辑概念。形式化显然在任何实际意义下,都不能表示数学,它只有外壳,没有内涵。罗素本人在另一场合曾说:数学是这样一门学科,在其中我们永远不会知道自己所讲的是什么,也不知道我们所说的是不是真的。这就可以用来反驳逻辑主义。
P228
新的思想如何被引入数学?如果数学的内容可以全部由逻辑推出,那它怎么能用于现实世界?对此并不容易回答,罗素和怀特海也没有给出回答。逻辑注意不能解释为什么数学适用于物理世界这一论点被数学适用于基本物理原理这一事实反驳了。而这一点,只要涉及到实在,就成了前提。数学技术勾画出物理原理的含义,譬如说PV=常数,F=ma。这结论仍然适用于物理世界,这就产生了疑问:为什么世界符合数学推理呢?我们后面将要回到这个问题上来。
《数学原理》中接受的(在许多逻辑系统中也接受的)实质蕴涵,甚至当其原命题不成立时,也允许蕴涵成立。因此如果一个假命题p被作为公理引入,则p隐含g可以在此体系中成立而且g仍然可能真。既然在《数学原理》的逻辑中,一个“不容置疑”的命题,可以从一个错误的公理中推出来,因此,这样一个论点是毫无意义的。P229
对逻辑主义也许可以用罗素在《记忆之像》中的一段话作为最后的总结:
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。