设想一个大圆盘,上面画着两个同心圆,一个很小,另一个非常大。圆盘很快地旋转。圆盘是相对于外面的观察者转动的,假设圆盘里面还有一个观察者。我们再假定外面的观察者的坐标系是惯性的。外面的观察者也可以在他的惯性坐标系中画出同样一大一小的两个圆,这两个圆在他的坐标系中是静止的,但与圆盘上的圆相重合。他的坐标系是惯性的,因此欧几里得几何学在他的坐标系中是有效的,他会发现两圆周之比等于其半径之比。但是在圆盘上的观察者又发现了什么呢?从经典物理学和狭义相对论的观点看来,他的坐标系是禁用的。但是假如我们想为物理学定律找出能适用于任何坐标系的新形式,那么我们必须以同样严肃的态度来对待圆盘上和圆盘外的观察者。现在我们是从外面来注视圆盘里面的观察者,看他如何靠测量去寻找旋转的盘上的周长与半径。他所用的小尺,与外面的观察者所用的是一样的。所谓“一样的”,是指实实在在一样的,就是说它是由外面的观察者交给里面的观察者的,或者说,它是在一个静止的坐标系中长度相同的两把尺中的一把。
里面的观察者在盘上开始测量小圆的半径与周长,他的结果一定会与外面的观察者的完全一样。圆盘围绕着它旋转的轴通过圆盘的中心,圆盘上接近于中心的那些部分的速度非常小。如果圆是足够小,那么我们完全可以放心地使用经典物理学而不必顾及狭义相对论。这就是说,对于里面的和外面的观察者来说尺的长度是一样的,因而对这两个观察者来说,两种测量的结果将是一样。现在盘上的观察者又来测量大圆的半径。放在半径上的尺相对于外面的观察者是在运动的。但是因为运动的方向跟尺垂直,这样尺不收缩,因而对两个观察者来说,它的长度是一样的。这样,对这两个观察者来说,三种测量结果都相同:两个半径和一个小圆的圆周。但是第四种测量则不然,两个观察者所测的大圆的周长是不相同的。放在圆周上的尺,朝着运动的方向,因此依照外面的观察者的观测,比起他的静止的尺来,现在它显得收缩了。外圆的速度较内圆的大得多,因而必须计及这种收缩。因此如果应用狭义相对论的结果,我们的结论应该是这样:两个测量者所测量的大圆的周长一定是不同的。由于两个观察者所测量的四种长度中只有一种是互不相同,因此里面的观察者不能和外面的观察者一样认为两半径之比等于两圆周之比。这就是说,在盘上的观察者不可能在他的坐标系中确认欧几里得几何学的有效性。
圆盘上的观察者得到这种结果以后,还可以说他不想去考察不能应用欧几里得几何学的坐标系。欧几里得几何学之所以崩溃,是由于绝对转动,是由于他的坐标系是坏的和被禁止的。但是在这个论证中,他已经拒绝了广义相对论中的主要观念。另一方面,如果我们拒绝绝对运动的观念而保持广义相对论的观念,那么物理学就必须建立在比欧几里得几何学更普遍的一种几何学的基础上。假如所有的坐标系都是可以允许的,便无法逃避这个结局。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。