从另一种角度来看,所有的组合都是由潜意识自我的自动性形成的,但只有有趣的组合才会进入意识领域。这仍然很神秘。在我们潜意识活动的上千个产物中,有一些能够跨过门槛走进意识,而另一些则被留在了潜意识中,这是什么原因呢?是一个简单的机会赋予这种通向意识的特权吗?显然不是。例如,在我们所有的感官刺激中,除非被其他原因吸引,否则只有最强烈的刺激能吸引我们的注意力。更普遍地说,那些拥有特权的无意识现象,就是那些容易变得有意识的现象,是那些直接或间接地最深刻地影响我们的情感敏感性的现象。
It may be surprising to see emotional sensibility invoked à propos of mathematical demonstrations which, it would seem, can interest only the intellect. This would be to forget the feeling of mathematical beauty, of the harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling that all real mathematicians know, and surely it belongs to emotional sensibility.
在数学论证上提到情感敏感性可能会使人感到惊讶,因为数学论证似乎只与智力有关。但这样说的话就忽略了数学之美,忽略了数与形的和谐、几何的优雅。而这是所有真正的数学家都能感受到的一种真实的美感,所以这当然也属于情感上的感性。
Now, what are the mathematic entities to which we attribute this character of beauty and elegance, and which are capable of developing in us a sort of esthetic emotion? They are those whose elements are harmoniously disposed so that the mind without effort can embrace their totality while realizing the details. This harmony is at once a satisfaction of our esthetic needs and an aid to the mind, sustaining and guiding. And at the same time, in putting under our eyes a well-ordered whole, it makes us foresee a mathematical law... Thus it is this special esthetic sensibility which plays the role of the delicate sieve of which I spoke, and that sufficiently explains why the one lacking it will never be a real creator.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。