数学联邦政治世界观
超小超大

双伽马函数 (3-2)

ln k=∫₁ᵏ ─

t

1

欲继续优化,考虑 ─=Ը(t) ,即

t

dt

∫₁ᵏ ─=∫₁ᵏ Ը(t)dt

t

=∫₁ᵏ dt ∫₀∞ e⁻ᵗˣ dx

=∫₀∞ dx ∫₁ᵏ e⁻ᵗˣ dt

e⁻ˣ – e⁻ᵏˣ

=∫₀∞ ───── dx

x

我们能够交互积分顺序,皆因两积分都是收敛的

于是

e⁻ˣ – e⁻ᵏˣ

ln k=∫₀∞ ──── dx

x

欧拉常数的积分表达式

根据欧拉常数的定义可知

ₖ 1

γ=lim (∑ ─ – ln k)

k→∞ ₙ₌₁ n

1 – e⁻ᵏᵗ

=lim (∫₀∞ ─── dt

k→∞ eᵗ – 1

Hₖ

e⁻ᵗ – e⁻ᵏᵗ

– ∫₀∞ ──── dt)

t

ln k

e⁻ᵗ e⁻ᵗ

=∫₀∞ ─── dt – ∫₀∞ ─── dt

1 – eᵗ t

e⁻ᵗ e⁻ᵗ

=∫₀∞ (─── – ───)

1 – e⁻ᵗ t

e⁻ᵗ

该公式表明 : 调和级数 ∫₀∞ ──

1 – e⁻ᵗ

e⁻ᵗ

与对数极限 ∫₀∞ ─ dt之差为常数。

t

双伽马函数的积分表达式

刚才我们已得到调和函数的积分表达式

ₖ 1 1 – e⁻ᵏᵗ

Hₖ=∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

已知双伽马函数的级数表达式‬

∞ 1 1

ψ(s+1)=–γ+∑ (─ – ───)

ₙ₌₁ n n+s

右侧级数即为调和函数

∞ 1 1 ∞ 1

∑ (─ – ──)=∑ ─ ↓

ₙ₌₁ n n+s ₙ₌₁ n

∞ 1 ₛ 1 1 – e⁻ˢᵗ

– ∑ ───=∑ ─=∫₀∞ ─── dt

ₙ₌₁ n+s ₙ₌₁ n eˡ – 1

Hₛ

将欧拉常数的积分表达式代入即得

e⁻ᵗ e⁻ˢᵗ

ψ(s+1)=∫₀∞(─ – ──) dt

t eᵗ – 1

双伽马函数的其他积分式

我们想推导出一个便于计算的双伽马函数积分式,仍然从定义入手。

根据定义

∞ 1 1

ψ(s)=–γ+∑ (── – ──)

ₙ₌₀ n+1 n+s

考虑用M(x) 替代级数内的两个分式

ψ(s)=–γ+∑ [M(n+1) – M(n+s)]

ₙ₌₀

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

纪与山言 连载中
纪与山言
芙呼芙噜
我的OC日常生活~
0.4万字1个月前
彼岸轮回,创世伴蝶 连载中
彼岸轮回,创世伴蝶
云瑶梦繁
很可能会借一些其他大大的文,会注明的。浩桐一起开挂。戴雨浩前世创始神,舞桐前世彼岸神,觉醒记忆后彼岸神位与蝶神神位融合,名为彼岸蝶神。主cp......
7.7万字4周前
道士下山:我利用玄学当星探 连载中
道士下山:我利用玄学当星探
顾临希
【2021.8.9签约】宁姝自小跟从师傅在山上修习道术,十八岁学成下山,投靠远房小叔。不料,小叔刚开了一家娱乐公司,人员紧缺。于是宁姝成了一......
11.6万字4周前
少年特战队之我在老地方等你 连载中
少年特战队之我在老地方等你
狙击手白鹰
落日篇“生命如同夕阳转瞬即逝”“夕阳西下,这是自然的规律。夕阳落下,你还能看到漫天的星辰啊”“…哈,是啊,还有星光点点…”星河篇“我们用命拼......
3.9万字4周前
妙先生之等你而归 连载中
妙先生之等你而归
衿妍
又是一次同样残忍的道理,但是至少不用在杀人,但是不到万不得已,只能选择杀。生与死,救与不救,只是一种选择。不是一种道理
4.7万字4周前
妖王盛宠:绝色逆天召唤师 连载中
妖王盛宠:绝色逆天召唤师
吱吱1
云璇樱因被好友背叛而导致意外穿越,来到了碧溪大陆同名同姓的女孩身体里,但她发现事实并不是好友背叛她,而是另一个声音在召唤,在碧溪大陆里,她结......
43.8万字4周前