数学联邦政治世界观
超小超大

双伽马函数 (3-1)

双伽马函数

定义

双伽马函数定义为伽马函数的对数导数

Γ'

ψ(s)=─ (s)

Γ

递推公式

根据ψ函数的定义可知

Γ' [sΓ(s)]'

ψ(s+1)=─ (s+1)=───

Γ sΓ(s)

sΓ'(s)+Γ(s) Γ' 1 1

=────=─ (s)+─=ψ(s)+─

sΓ(s) Γ 2 s

因此

1

ψ(s+1)=ψ(s)+─

s

反射公。

根据余元公式可知

π

Γ(s)Γ(1 – s)=───

sin πs

因此

lnΓ(s)+lnΓ(1 – s)=ln π – ln sin π s

等式两边对 s 求导

Γ' Γ'

─(s) – ─(1 – s)=–π cot πs

Γ Γ

因此

ψ(1 – s) – ψ(s)=π cot πs

欧拉常数

欧拉常数被定义为调和级数与对数极限之差

ɴ 1

γ=lim (∑ ─ – ln N)

ₙ₌₁ n

显然我们能有多种方法改写这个式子。

观察以下积分

1

─=∫₀¹tˣ⁻¹dt=∫₀∞e⁻ˣᵗdt

n ︸

Ը{1}(x)

我们定义

M(x)=∫₀¹tˣ⁻¹dt

{

L(x)=Ը{1}(x)

调和级数的积分表达式

调和级数是调和函数的极限

ₖ 1

H=lim ∑ ─=lim Hₖ

k→∞ ₙ₌₁ n

Hₖ

由于

ₖ 1 ₖ ₖ

Hₙ=∑ ─=∑ L(n)=∑ ∫₀∞e⁻ⁿᵗdt=∫₀∞↓

ₙ₌₁ n ₙ₌₁ ₙ₌₁

(∑e⁻ⁿᵗ)dt

ₙ₌₁

右侧积分内级数为等比数列,显然

ₖ 1 – e⁻ᵏᵗ

∑ e⁻ⁿᵗ=e⁻ᵗ .────

ₙ₌₁ 1 – e⁻ᵗ

出于收敛性考虑,我们暂时不取极限,直接代入即得

ₖ 1 1 – e⁻ᵏᵗ

∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

亦可通过黎曼ζ函数得到该结果

1

H=lim ζ(s)=lim ── ∫₀∞ ↓

s→1 s→1 Γ(s)

tˢ⁻¹ dt

─── dt=∫₀∞ ───

eᵗ – 1 eᵗ – 1

对数的积分表达式

对数可表示为积分

dt

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

随性一笔 连载中
随性一笔
赵玉君
杂七杂八。
0.1万字1年前
那片星空只有你 连载中
那片星空只有你
星空安然
纯属虚构,随意随意。
0.1万字1年前
三世如浮梦 连载中
三世如浮梦
听晚一心
“浮梦魂归,桑玄花开,朝花萦放回忆。浮梦影散,从此执掌一方安宁。”“我是神仙,自然没有办法偏心一人,更不能去随随便便的去爱一个人。”前尘往事......
39.7万字12个月前
医毒双绝:神尊爱妻你别跑 连载中
医毒双绝:神尊爱妻你别跑
辰晓曦
《本书与2021.9.3签约,禁止转载!》身在天界的生命神凤羽,明明位高权重执掌生死大权,却有一颗看不透人心的琉璃心,身无牵挂的她一心为自由......
44.2万字12个月前
有谁愿意当坏人 连载中
有谁愿意当坏人
该用户已注销
这人很懒,什么都没写
25.2万字12个月前
古风师徒日常 连载中
古风师徒日常
猫咪没有了魚儿
只是师徒日常二三事,徒儿淘气,师父严厉。喜欢的小伙伴进来,不喜欢的小伙伴请静静离开。
0.2万字12个月前