数学联邦政治世界观
超小超大

康托尔:数学的本质在于它的自由 (2-1)

每当我们提及数学,大多数人可能会首先想到它是一个充满公式、定理和逻辑的领域。然而,对于19世纪的数学家康托尔来说,数学远不止如此。他曾经说过:“数学的本质在于它的自由。” 这句话不仅揭示了康托尔对数学的深刻理解,而且为我们在数学建模领域中的探索提供了宝贵的启示。

1. 康托尔的成就

乔治·康托尔(Georg Cantor)是19世纪末和20世纪初的一位杰出的德国数学家,以其在集合论方面的开创性工作而著称。集合论为现代数学的许多分支提供了基础,包括实数、函数、无穷级数等的严格理论基础。

之前,人们普遍认为所有无穷集合的大小都是相同的。然而,康托尔证明了存在不同“大小”的无穷集合。他引入了一种称为“势”的概念来描述集合的大小,并证明了例如自然数集的势与实数集的势是不同的。

康托尔提出了一个著名的假设,称为连续性假设,它关于自然数集与实数集之间是否存在其他大小的集合。这个假设在20世纪初被证明既不能被公理化的集合论证明也不能被其否定。

除了集合论,康托尔还对函数论和实数理论做出了重要贡献。

尽管康托尔的工作在其时代受到了一些批评和质疑,但他的观点和方法后来被广泛接受,为20世纪的数学发展奠定了基础。康托尔的贡献不仅改变了数学家们对无穷和实数的看法,而且为现代数学的形式化和公理化提供了动力。

2. 不同的无穷大

康托尔的研究对我们的无穷大理解产生了深远的影响。以下我们通过三个具体的数学案例来进一步解释这一观点。

案例1:自然数与实数之间的对角线论证

康托尔的“对角线方法”是一个著名的证明技巧,用于证明[0,1)之间的实数集合是不可数的,即它不能与自然数集建立一一对应关系。这是一个非常直观且令人惊讶的证明,因为它展示了存在不同“大小”的无穷集合。

以下是对角线方法的详细描述:

康托尔的对角线论证:

1. 假设

假设我们能够列出[0,1) 之间的所有实数。每个实数都可以写成一个无限小数,例如 0.1234567 . . . 。因此,我们可以设想有一个列表,列出了所有这样的实数。

1.0 α₁₁α₁₂α₁₃ . . .

2.0 α₂₁α₂₂α₂₃ . . .

3.0 α₃₁α₃₂α₃₃ . . . . . .

其中,每个αᵢⱼ 是 0 到 9 之间的一个数字。

1. 构造新的实数:

从上述列表中,我们可以构造一个新的实数,它与列表中的任何一个实数都不相同。方法如下: 对于新实数的第 i 位小数,我们选择一个与列表中第 i 个实数的第 i 位小数不同的数字。具体地说,如果列表中第 i 个实数的第 i 位小数是 5 ,我们就选择6;否则,我们选择5。 这样,我们得到了一个新的实数:

0.b₁b₂b₃ . . .

其中,每个b 或者是 5 ,或者是 6 。

1. 结论:

由于新构造的实数与列表中的任何一个实数都不相同(至少在某一位上),这意味着我们的原始假设是错误的。即,我们不能列出[0,1)之间的所有实数。因此,[0,1)之间的实数集合是不可数的。

案例2:有理数与实数

我们知道,有理数 (可以表示为两个整数的比值的数) 是可数的。但是,实数集 (包括有理数和无理数) 是不可数的。这意味着有理数的无穷大与实数的无穷大是不同的,尽管都是无穷的。

案例3:阿列夫序列

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

冷宫九公主要翻身 连载中
冷宫九公主要翻身
某家女主
因为不想弄这么多任务,所以就直接只有旁白仿炮灰闺女的生存方式
55.7万字12个月前
当迈克狐加入反派 连载中
当迈克狐加入反派
追求自由_116043662766944
0.1万字1年前
12星座:星座学院 连载中
12星座:星座学院
钺萌
【发布于2024.10.15】星海陨落黄道叛徒深渊阴谋欺骗自我黄道集结以一换一闪星复活击毁深渊
1.0万字12个月前
小马利亚:我见到了童年白月光 连载中
小马利亚:我见到了童年白月光
梧笙柳
五岁那年,梧笙跟着父亲一起去了云中城,意外遇见一匹天蓝色身体彩虹色鬃毛的佩格斯小马。那匹小马为了帮助一匹被欺负的小马出头,答应和三匹小马同时......
1.4万字12个月前
小花仙之芬妮安安黑暗恋 连载中
小花仙之芬妮安安黑暗恋
黯皙
在安安和芬妮小时候,芬妮转到安安的班上,并和安安成为了好朋友,长大后,长大后,因为安安没有遵守誓言,芬妮以为是安安的背叛,所以加入了黑暗魔神......
0.4万字12个月前
选妃路漫漫 连载中
选妃路漫漫
江晚暮色浓
你体验过好不容易爱上了一个人然后爱人就战死了么?秋孑凛体验了。你体验过一言不合就禁足的家长么?墨芷苒就体验了。你有体验过莫名其妙地自己最想要......
9.7万字12个月前