数学联邦政治世界观
超小超大

Haskell和自然数之基础篇(二) (3-1)

我们用一个新的数据类型Church来定义丘奇数,这实际上就是以函数f 为参数得到多个函数f 组合的函数的lambda函数的封装类型,其本质就是一个lambda函数,这个lambda函数的返回结果是多个函数f的组合。

当类型Church的lambda的函数参数是(+1) 时,如果这个丘奇数表示的是自然数S (S (S O)),那lambda函数返回的结果是(+1) . (+1) . (+1),也是一个函数,将这个函数应用到参数0,我们得到了3。可以看到类型Church(丘奇数)本身的定义就是归纳的,因此其归纳函数iter 的实现就是将归纳步step 直接作为参数传递给类型Church的lambda函数,然后将结果函数应用到初始值z ,就得到了归纳函数iter 的结果。

因为丘奇数本身的定义就是归纳的,所以我们就不需要用归纳法来实现加法了,直接用Church本身的定义来实现加法就可以了。比如当丘奇数m 的值为Church (\f -> f . f . f),丘奇数n 的值为Church (\f -> f . f) 时,m 加上n 的丘奇数的lambda函数返回的结果是(f . f . f . f . f),也就是Church (\f -> (f . f) . (f . f . f)),因此加法就是由函数的组合运算来实现。

类似的,丘奇数的乘法也使用其本身的定义来实现。当丘奇数m 的值为Church (\f -> f . f . f),丘奇数n 的值为Church (\f -> f . f) 时,m 乘以n 的丘奇数的lambda函数返回的结果是(\g -> g . g) (f . f . f),得到Church ((\g -> g . g) . (\f -> f . f . f)),结果是Church (\f -> (f . f . f) . (f . f . f)),因此乘法就是由丘奇数的lambda函数的组合来实现的。

最后,丘奇数的幂运算也可以使用其本身的定义来实现。当丘奇数m 的值为Church (\f -> f . f . f),丘奇数n 的值为Church (\f -> f . f) 时,m 的n 次幂的丘奇数的lambda函数返回的结果是(\g -> g . g) (\h -> h . h . h),得到Church (\f -> ((\g -> g . g) (\h -> h . h . h)) f),将g 替换为(\h -> h . h . h) 有Church (\f -> ((\h -> h . h . h) . (\h -> h . h . h)) f),结果是Church (\f -> (f . f . f) . (f . f . f) . (f . f . f)),因此幂运算就是将一个丘奇数的lambda函数应用到另一丘奇数的lambda函数的方式来实现的。

丘奇数和前面两个自然数表示形式所不同的是丘奇数的前驱的实现比较难,不像皮亚诺形式的和列表形式的那么简单直观。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

致命渡劫 连载中
致命渡劫
阿玉虞语
“未送出的新婚贺礼”“亲手判决师父,他的第二个父亲”“我爱你,生日快乐”
7.8万字6个月前
梦之国——鬼兔 连载中
梦之国——鬼兔
岁岁于梦
0.6万字6个月前
彼岸的逝言2水月镜花 连载中
彼岸的逝言2水月镜花
岚嬗晴雪
续【彼岸的逝言】花开叶落不相知,各自天涯各自痴。缘灭缘生空自叹,来生彼岸化相思。
0.3万字6个月前
山海吃货联萌 连载中
山海吃货联萌
映双双
【皮卡丘文社】新书《岌岌扶唧唧》求眼熟~吃了吗?吃饱了吗?下顿想吃什么?想美容养颜还是延年益寿?或者,过目不忘?来吃饭吧!山河海私房菜欢迎您......
18.9万字6个月前
白月光手拿复活剧本 连载中
白月光手拿复活剧本
是有点烦a
第一个故事手拿剧本的白月光能战胜主角光环的女主嘛,让我们拭目以待。第二个故事腹黑城府商界大佬×伪白莲复仇女议员,一切尽在掌握,伪白莲如何拿捏......
17.1万字6个月前
绝望十三号城市 连载中
绝望十三号城市
凭稍偶才
双男主[已签约]救赎遭遇变故的辛南栖,记忆被删除的伊斯维肆失去爱人的乔巷伞,被追杀的偏执审魔者五大术家的变故“我的圣天子,我永远忠于你”“我......
6.3万字6个月前