数学联邦政治世界观
超小超大

Rudin工具箱与极分解技巧 (2-1)

目录

前置定理 ▹

预备知识:复数的极分解 ▹

1.9(e):复可测函数的极分解 ▹

定理6.12:复测度的极分解 ▹

应用 ▹

定理1.33:积分的绝对值不等式 ▹

定理1.39(c):积分的绝对值不等式的取等条件 ▹

定理6.13:绝对连续测度的全变差的Radon-Nikodym导数 ▹

定理6.14:Hahn分解定理 ▹

Rudin书中极其频繁地使用“极分解”技巧。尽管他在书中用此术语有具体所指,笔者仍然坚持用它指代更为广泛的一类技巧。它有函数的版本,也有测度的版本,主要的精神都是一样的:把一个东西的“正的”部分留下,把一个“数”甩出来,两部分分离以分别操作。

前置定理

“极分解”技巧有函数的版本,也有测度的版本。我们先说函数的版本,从函数的版本中获得灵感,以更好地理解测度的版本。

预备知识:复数的极分解

对于复数 z ∈ ℂ ,存在 α ∈ ℂ, |α|=1 ,使得 z|α| .

由于这个结论太简单,我们一般都显式地写出α=eⁱθ 来,其中 θ=Arg z 称为辐角。

1.9(e):复可测函数的极分解

Rudin在1.9节的断言(e)处给出了复可测函数的一个分解:

若 f 为 X 上的复可测函数,则存在 X 上的复可测函数 α ,使得 |α|=1 ,且 f=α|f| .

显然,要选取也只能选取

f

α=─

|f|

,只要说明它是可测的就可以了。需要注意的是 E=f⁻¹(0) 中的那些点。利用连续函数复合可测函数可测,研究 ℂ\{0} 上的连续函数

z

φ(z)=─ 。

|z|

为了规避困难,令

α(x)=φ(f(x)+χᴇ(x))

α 与 φ 的不同就在于在 f=0 处(也就是 E 上)取到 α=1 。可以验证α 可测且满足要求。

定理6.12:复测度的极分解

设μ 是 X 的 σ– 代数 𝕸 上的复测度,则存在一个可测函数 h ,使得 |h|=1 对所有的 x ∈ X 成立,并且 dμ=hd|μ| .

容易看出h 的存在性,这由Lebesgue-Radon-Nikodym定理(定理6.10)保证。平均值技法(定理1.40)指出 |h| ≤ 1,α. e. 。取 Aᵣ={|h(x)|<r} ,考虑它的一个划分并结合 h 的定义做估计可以得到 |μ|(Aᵣ)=0 ,从而 h| ≥ 1,α. e. ,由是知 |h|=1,α. e. ,在零测集上重新定义 h 不影响上面任何步骤。

应用

定理1.33:积分的绝对值不等式

若f∈L¹(μ) ,则 |∫xfdμ| ≤ ∫x|f|dμ

为证明此式,令z=∫xfdμ ,它是一个复数,从而可以作极分解 z=α|z| 。立即有:

|∫xfdμ|=|z|=α⁻¹z=α⁻¹ ∫xfdμ=∫xα⁻¹fdμ

仔细观察这奇妙的步骤。我们通过极分解把 z 从绝对值符号 | · | 中“解放了出来”,宛如“极限脱出”。而后,把 z 还回积分的形式,这时就可以利用积分的线性性把单独的常数 α⁻¹ 再“塞进积分号”!

现在,注意到∫xα⁻¹fdμ 是非负实数,而复函数积分相当于实部虚部分别积分,则其积分值正如复函数 α⁻¹f 的实部 u=Re(α⁻¹f) 单独积分,即有

fxα⁻¹fdμ=∫xudμ

而 u 的实部满足下面的估计式

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

系统逼着我强吻了校花 连载中
系统逼着我强吻了校花
青真元
我居然喜欢了校花几千年?!
1.1万字1个月前
边缘角色 连载中
边缘角色
River_L
如果能为自己定价你会为自己定价多少呢?或许你会觉得这个问题很侮辱人,但在云城里面这个问题也说明了你的价值。没有人可以让顶层的那个人亲自去问他......
1.5万字4周前
重生翻盘 连载中
重生翻盘
呜呜呜嗯嗯嗯
传闻中,佣兵界的第一雇佣兵吴茗在一年前无缘无故的失踪,而她现在又回来了。众人听到这个消息,有人欢喜有人愁。不仅仅是这个消息,除此之外——暗影......
10.1万字4周前
羡无一芳 连载中
羡无一芳
梓无君
“男子和男子怎可在一起?”“那我们可以破这个咧啊!”“不可以的,不可以的,你懂吗?这样只会让世人唾骂的”“那又如何?只要我们相爱,反了天下又......
10.2万字4周前
叶罗丽之神秘仙子王默 连载中
叶罗丽之神秘仙子王默
清忘沫影
不是默粉请出去
1.0万字4周前
南方有溪川 连载中
南方有溪川
千袂.
南有溪川,北冥有鱼?川青、南南:我们是南方有溪川,而此情有你!第一次相遇,南南:我护你。第一次相逢,川青:我寻你。第一次相思,南南、川青:我......
5.3万字4周前