数学联邦政治世界观
超小超大

同余理论 (3-1)

在学习数论时,同余理论是绕不开的一环,但是,一个显著的问题就是同余问题非常复杂,多项式的同余方程解的数量远比多项式代数方程多,这种解的多样性导致了,对于一个一般的同余方程,根本就没有简单的方法获得所有的解。

f ≡ 0 mod α

f=0 ⇔ f ≡ 0 mod α

实际上,代数方程可以看作是模零同余方程,由此我们可以将方程转化为代数方程

f=kα

f=k0=0

可以发现,同余方程的实质是多项式的乘积分解。由此我们可以直接构建一般同余理论,或者说抽象同余理论。

抽象同余理论

【以下会直接使用深奥的数学概念,最好关注于模式,而不是具体的术语,如此才有可能体会到一些实质内容】

对任意结构的乘积分解获得的理论就是同余理论。

F=A · B

F ≡ 0 mod B

F ≡ 0 mod A

F=A · B+C

F ≡ C mod A,B

那么实际上同余理论是数学对象乘积结构的反结构。

也就是说,给定一个任意的数学对象空间,在其上定义乘法运算,由此获得乘积空间,考虑乘积空间上的方程或者曲面就可以获得满足方程的解,或者落在曲面上的点,这些解和点就是同余方程的解。

实际上意味着对于任意数学对象而言,只要存在乘积结构,就必然可以诱导同余理论,就像代数结构中,出现了乘法,就可以考虑乘法逆元一样。

同余理论与代数结构的差异在于,同余理论允许复杂的代数结构,也就是说运算不局限于乘法一种,可以包括加法,乘法,指数,对数,三角,任意算子,他们的综合运算构成的运算闭包就是方程,考虑这个方程的乘积分解性质就是同余理论。

也就是说

Alg[A,+,·,exp,ln,cos,sin,S[–]]=BC

左边指的是集合在任意多种代数运算下的运算闭包,右边则是集合中的元素乘积。

这让我想起来了泛代数理论中的同余与商代数。实际上,他建立起了商代数结构,也就是将运算定义在同余类上,或者说等价类上。

由此,我大概明白了泛代数在研究什么问题了,他研究的是各种代数构造的最一般推广形式,这些推广形式定义在极为基础的数学结构上,比如集合,幂集,偏序集,格上,因此,通常而言,泛代数是无法学习的,因为他所考虑的对象太过基本了,单纯学习理论没有任何意义,需要考察所有的经典代数结构,获得基本模式后,感到疑惑,由此询问模式本身的含义,才有学习的动机。

这就像过去,考虑范畴,对于乘法感到疑惑,由此深入半群,考察分析,对拓扑和序产生疑问,由此深入偏序集与格,考察环论与理想论,对于集合代数感到疑惑,由此深入幂集上的运算结构。具体理论是通往抽象理论的台阶。

由此,代数结构论可以看作是范畴论,而代数运算论就可以看作泛代数,代数模式论就是直觉模式,代数几何论就是图表示与动力系统,代数变换论为抽象群论。把这些具体领域一一搞清楚后,就能建立起来代数学的大统一理论。

有趣的设想。

具体同余理论

上面探讨了抽象同余理论的代数基础,商,等价类,乘积分解。下面考虑具体同余理论遇见的困难。

同余理论实际上为乘积分解,所以我们就需要考虑什么时候可分解,什么时候不可分解,假如可分解,意味着什么样的条件,假如不可分解,是什么导致了不可分解性?

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

只此别离 连载中
只此别离
生命高度
本书别名《没有明天》【虐文】【已完结】结合了某某些真实事件改编、以文字的方式呈现彭萧是在家暴家庭中长大,七岁那年,父亲残忍杀害母亲,22岁,......
0.6万字8个月前
闹谁心 连载中
闹谁心
187***957_9220581107
随记
0.3万字8个月前
背叛(主角是张小福) 连载中
背叛(主角是张小福)
林念棉
绿茶的到来破坏了张小福的美好生活
0.3万字8个月前
落与颍川 连载中
落与颍川
应爨
(已签约)上古时期,有一位神明名唤应川,他因天地万物而生,身下一名弟子叫落,应川有一神物灵丹,至强之物,人人而垂涎之物,为了护弟子,护天下苍......
3.7万字8个月前
九尾火狐 连载中
九尾火狐
冰宇露露(花越)
这人很懒,啥都没写。
28.6万字8个月前
穿越幻城我是岚裳 连载中
穿越幻城我是岚裳
g盼盼
岚裳人鱼国最尊贵的小公主不应该是那样的结局只因为是女配她的结局就已经注定了我们来看看如果再来一次她会有怎样的结局吧!
1.3万字8个月前