数学联邦政治世界观
超小超大

Dedekind分割及Dedekind定理 (2-1)

戴德金原理

目录

Dedekind分割 ▹

分割 ▹

Dedekind分割 ▹

Dedekind定理 ▹

定理内容 ▹

定理证明 ▹

参考资料 ▹

电子资源 ▹

Dedekind分割

分割

分割定义:对于数域 K ,存在两个集合 A,B 满足:

• A,B ≠ ф

• A∪B=K

• A∩B=ф

则称A,B为数域K 上的一个分割,记为 {A,B}

Dedekind分割

当A,B 满足分割的定义时,若同时还满足:

• 集合 A "向下封闭连续",即:对于任意 ∀x ∈ A ,∀y<x,都有 y ∈ A。且A“连续”如 [1,2)∪[3,4] 不符合要求; [1,8] 满足条件;

• 集合 A 中"无最大元素",即:对 ∀x ∈ A,∃y ∈ A,s.t. x<y .

则称{A,B} 为数域 K 的一个Dedekind分割,记为 A|B ,其中集合 A 称为该分割的下集, B 为上集。

例题:证明 √2 是无理数。

证明,在有理数域Q 上构造两集合 A,B ,其中 A={x|x<√2,x ∈ Q},B={x|x ≥ √2,x ∈ Q}

其中A,B 满足:

• A,B ≠ ф

• A∪B=Q

• A∩B=ф

• ∀x ∈ A,∀y<x<√2,故 y ∈ A。且A“连续”

• 对∀x ∈ A,∃y ∈ A,s.t. x<y (*)

故A|B 为 Q 的一个Dedekind分割A|B 。

2p+2

任取p>0,p ∈ Q,q=───

p+2

.下证 √2 即不在集合 A 中,又不在集合 B 中:

2 – p²

由于q – p=───,

p+2

2(p² – 2)

q² – 2=───

(p+2)²

2 – p²

1. 若 p ∈ A ,则 q – p=───>0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───<0

(p+2)²

,故 q ∈ A ,故 A 无最大元素

2 – p²

2. 若 p ∈ B ,则 q – p=───<0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───>0

(p+2)²

,故 q ∈ B ,故 B 无最小元素

由以上构造可知,A 无最大元素,B 无最小元素,所以 √2 ∉ A,√2 ∉ B,则 √2 ∉ A∪B=Q,

所以√2 是无理数。

现说明 * 成立:

将x 和 √2 写成十进制小数:

x=x₀.x₁x₂x₃ . . . xₙ000...(设x有n位小数,后面都是0)

√2=y₀,y₁y₂y₃ . . . yₙ...

将他们对应的项逐一比对。

x₀+y₀

若x₀ ≠ y₀,取 y=───

2

若x₀=y₀ ,设小数点后前 k 项相等,第 k+1 项不等,则取 xₖ₊₁ 和 yₖ₊₁ ,令

xₖ₊₁+yₖ₊₁

c=────

2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

君落戏 连载中
君落戏
火禾.
1.3万字12个月前
我一个星际星民来到异界娶夫郎 连载中
我一个星际星民来到异界娶夫郎
水歆
本应该在星际战场上死亡的魏锦汐重生到了异世界,在这里她遇到了两只松鼠。然后因为毁了苍望鹰“白涵”的家被迫和他打了一架,因为这一架认识了自己的......
6.9万字1年前
八犬传之再生 连载中
八犬传之再生
如果回忆容易
〈念禾文社〉信乃重生,但是有的记忆记不得了,对于上辈子伤害或者他伤害的人自动的回避,采取冷漠的态度对待。上辈子他记忆忘记了差不多了,只记得模......
4.5万字12个月前
马桶人末世,我直接进化超级监控人 连载中
马桶人末世,我直接进化超级监控人
太阳_52159990472642396
马桶人进攻了地球,地球上有着100名被女电视人挑选的战士,主角白泽天就是其中一位,不过白泽天好像拥有某种特殊的能力,他能让击杀马桶人获得的监......
2.7万字12个月前
星河璀璨之澜星cp 连载中
星河璀璨之澜星cp
千辰云海
已弃
2.4万字12个月前
夜空繁星 连载中
夜空繁星
鱼蕊希
都是小学瞎写玩的,绕过
13.4万字12个月前