数学联邦政治世界观
超小超大

Dedekind分割及Dedekind定理 (2-1)

戴德金原理

目录

Dedekind分割 ▹

分割 ▹

Dedekind分割 ▹

Dedekind定理 ▹

定理内容 ▹

定理证明 ▹

参考资料 ▹

电子资源 ▹

Dedekind分割

分割

分割定义:对于数域 K ,存在两个集合 A,B 满足:

• A,B ≠ ф

• A∪B=K

• A∩B=ф

则称A,B为数域K 上的一个分割,记为 {A,B}

Dedekind分割

当A,B 满足分割的定义时,若同时还满足:

• 集合 A "向下封闭连续",即:对于任意 ∀x ∈ A ,∀y<x,都有 y ∈ A。且A“连续”如 [1,2)∪[3,4] 不符合要求; [1,8] 满足条件;

• 集合 A 中"无最大元素",即:对 ∀x ∈ A,∃y ∈ A,s.t. x<y .

则称{A,B} 为数域 K 的一个Dedekind分割,记为 A|B ,其中集合 A 称为该分割的下集, B 为上集。

例题:证明 √2 是无理数。

证明,在有理数域Q 上构造两集合 A,B ,其中 A={x|x<√2,x ∈ Q},B={x|x ≥ √2,x ∈ Q}

其中A,B 满足:

• A,B ≠ ф

• A∪B=Q

• A∩B=ф

• ∀x ∈ A,∀y<x<√2,故 y ∈ A。且A“连续”

• 对∀x ∈ A,∃y ∈ A,s.t. x<y (*)

故A|B 为 Q 的一个Dedekind分割A|B 。

2p+2

任取p>0,p ∈ Q,q=───

p+2

.下证 √2 即不在集合 A 中,又不在集合 B 中:

2 – p²

由于q – p=───,

p+2

2(p² – 2)

q² – 2=───

(p+2)²

2 – p²

1. 若 p ∈ A ,则 q – p=───>0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───<0

(p+2)²

,故 q ∈ A ,故 A 无最大元素

2 – p²

2. 若 p ∈ B ,则 q – p=───<0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───>0

(p+2)²

,故 q ∈ B ,故 B 无最小元素

由以上构造可知,A 无最大元素,B 无最小元素,所以 √2 ∉ A,√2 ∉ B,则 √2 ∉ A∪B=Q,

所以√2 是无理数。

现说明 * 成立:

将x 和 √2 写成十进制小数:

x=x₀.x₁x₂x₃ . . . xₙ000...(设x有n位小数,后面都是0)

√2=y₀,y₁y₂y₃ . . . yₙ...

将他们对应的项逐一比对。

x₀+y₀

若x₀ ≠ y₀,取 y=───

2

若x₀=y₀ ,设小数点后前 k 项相等,第 k+1 项不等,则取 xₖ₊₁ 和 yₖ₊₁ ,令

xₖ₊₁+yₖ₊₁

c=────

2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我在话本市的日常 连载中
我在话本市的日常
汐司
话本市里那些搞笑、奇葩日常生活,即将播出,请观看。【文中部分话本人,都是有原型的,可在评论区留下你在这里的模样与契光者模样、性格】
5.6万字8个月前
黑化徒弟萌宠师 连载中
黑化徒弟萌宠师
萧萧九州
现代少女木小小一不小心穿成了小说中男主的反派师尊,怎么办呢?不慌,木小小自认好歹是接受了九年义务教育的高等生,会怕区区穿越?她相信只要她一心......
78.3万字8个月前
……白月情缘…… 连载中
……白月情缘……
Elina_慧
天使…就一定是善良无私的吗?答案很明确。这是一个关于六界的故事,那些至高无上者们的故事,亦是一个平凡人穿越的故事…某个“天真无邪”的少年指着......
22.0万字8个月前
凉风吐槽 连载中
凉风吐槽
Jiang江
【羌槿文社】神奇作品大集合❗️❗️只有你想不到,没有我写不到。冒着封号、被喷的风险为各位观众老爷播报前线别人十几岁为国争光,而我十几岁冒着风......
4.6万字8个月前
公主成长日记 连载中
公主成长日记
霍玲瑶
爱之公主,魔法纪元历2005年10月4日出生于爱心魔法王国,未来爱心魔法王国的女王,梦幻乐队的队长、主唱能长生不老和长生不死
4.6万字8个月前
安河桥北待归 连载中
安河桥北待归
衍清prain
安河桥北再也没有那个人年少的经历,不堪回首的往事似乎发生的一幕幕都在往过去延伸
8.6万字8个月前