数学联邦政治世界观
超小超大

SEP:可计算性与复杂性(一) (5-5)

如果我们将图灵机M开始于含有n的磁带上,而它最终停机时,磁带含有m,则我们说M在输入n时计算出m。M(n)=m 如果我们将M开始于输入n,而它或者不能停机,或者停机时,不含有一个自然数,比如它含有0或是中间有空白符,那么我们便说M(n)是未定义的(undefined),用符号表达为: M(n)=↗。如此,我们便可为每个图灵机M关联一个部分函数,M:N → N∪{↗} 。我们说这个函数M是全函数,当,对于所有n ∈ N M(n) ∈ N,即M(n)总是被定义的时。

现在我们便可形式化地定义,再之前非形式化描述过的,递归可枚举。若S ⊆ N,而S是递归可枚举的,当且仅当,我们有某个图灵机M,其使得S是经由M计算的函数的像,符号地,S={M(n)│n ∈ N;M(n) ≠ ↗}

这样,S是递归可枚举的,仅当,它可以被某个图灵机列出。若S是递归可枚举的,且其元素可由图灵机M像上面那样列举出来。这样,我们就可以描述另一个图灵机P,其在输入n时,以循环的方式运行图灵机M与其所有可能的输入,直到最终输出n。如果这发生了,那么P停机,并输出“1”,即,P(n)=1,如果n ∉ S,那么,M将永远不会输出n所以P(n)也永远不会停机,即P(n)=↗。

设P(n)↓意味着,图灵机P在输入n时,最终能够停机。对于一个图灵机P,定义L(P),即P所接受的集合为,那些当输入进P而P能最终停机的,L(P)={n│P(n)↓}

上述论证表明,如果一个集合S是递归可枚举的,那么其可以被图灵机P接受,即S=L(P)。这个式子的逆同样也成立。这样,S是递归可枚举的,当且仅当,它能被某个图灵机P所接受。

我们说一个集合S是可判定的,当且仅当,有一个全图灵机M,其可以判定,对于所有的n ∈ N,是否有n ∈ S,把值“1”作为是,“0”则为不是。对于所有n ∈ N,如果n ∈ S,则M(n)=1,即,M在输入n上最终停机,并输出“是”,而如果n ∉ S,则M(n)=0,即M在输入n上最终停机,并输出“否”。关于可判定的同义词是,可计算的,可解的,递归的。

对于S ⊆ N,S的补便是N – S,即,所有不在S中的自然数的集。我们说集合S是共递归可枚举的(co-r.e.),当且仅当,其补是递归可枚举的且共递归可枚举的,然后我们可以在第一列中列出所有它的元素,而在第二列中列出所有它的非元素。通过这样的方式,我们可以判定,给定元素n,是否属于S,这只需要浏览一下这两行然后等着n出现就行了。如果其出现在第一行,那么n ∈ S,反之出现在第二行,就是n ∉ S。事实上,一个集合是递归的,当且仅当,它是递归可枚举的且共递归可枚举的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

永远停驻于那个夏天吧 连载中
永远停驻于那个夏天吧
4000時
请关注四千时谢谢喵【自留oc向】第一次在话本写东西!这是纯oc向的小说てす!一起去鬼屋探险吧!杂乱剧情注意‼️多结局注意❗️男频剧情️,女频......
0.7万字1年前
凯丽的冒险 连载中
凯丽的冒险
纳宝帝丽芝士威化饼干
三个小屁孩的冒险
0.3万字1年前
出去旅了个行,顺便拖了个单 连载中
出去旅了个行,顺便拖了个单
在下赫某人
ch:英法(保证甜文)不是很长,超短,写了一下英法由初识到恋爱的短史(可能有番外,但不多)
1.7万字1年前
快穿之替身女主 连载中
快穿之替身女主
小南风雪
在现实世界中死了的沈秋兰,和傻憨憨系统,穿越各个位面,回到现实世界的故事。在小世界里遇到了一位处处帮忙的男人,沈秋兰觉得无事献殷勤,非奸即盗......
20.8万字1年前
洛林之你和我 连载中
洛林之你和我
希辰咯
与原动画无关。有问题请多多包含。
1.8万字1年前
六界风华 连载中
六界风华
粟s
我们的相遇究竟是对的还是从一开始就是错的
11.4万字1年前