数学联邦政治世界观
超小超大

SEP:可计算性与复杂性(二) (5-1)

2.4 The Unsolvability of the Halting Problem

图灵问到,对于所有自然数集来说是否其都是可判定的。通过下面的计数论证,我们非常容易地就能知道答案是否定的。N有不可数数量的子集,但由于我们只有可数数量的图灵机,所以也只有可数数量的集合是可判定的。那么最后就是,多数集合都是不可判定的。

图灵实际上构造了一个不可判定集。如我们将看到的那样,他是通过运用对角线法(diagonal argument)来做到的。对角线法可以追溯到康托尔用其去表明实数是不可数的。哥德尔在他对不完备性定理的证明中,也用了一个相似的对角线法,他在数论中构造了这样一个句子J,这个句子的意思是,它本身不可证。

图灵如下地构造了一个对角线式停机集K:

K={n│Mₙ(n)↓}.

这是指K由那些,输入它们自己的程序后最终会停机的图灵机所组成。

不难看到,K是递归可枚举的。为了构造矛盾,假设,K也是共递归可枚举的,并让d为接受K的元素的一台图灵机的数。这样,对于任何n,n ∉ K ⇔ Md(n)↓

但考虑一下,当我们在上面用d代替n时会发生些什么:

d ∉ K ⇔ Md(n)↓

但K的定义告诉我们,

d ∈ K ⇔ Md(d)↓.

这样,我们就有了,

d ∈ K ⇔ d ∉ K

而这是一个矛盾,因此,我们对K是共递归可枚举的假设是错误的。也因此,K将不是递归的。这可以推出,对于一个给定的图灵机及其输入,并判定其最终是否能够停机的问题来说,这不是一个可计算问题,即,停机问题是不可解的。(译注:最先的定义告诉我们d属于K等价于Md输入d时停机,但因为,K是递归可枚举且共递归可枚举的,所以对于任何数n都可以使M停机而不管是其是否属于K,而当我们将d代到其不属于K的n的情况下时,其当然也可以停机,并等价推出d ∈ K,这样就出现了矛盾)

1. Primitive Recursive Functions

我们接下来定义*原始递归函数(primitive recursive functions)*的类(class)。这是一个非常有有意思的函数类,其由Skolem (1923)给出,并被哥德尔运用到了他对不完备性定理的证明中。我们关注于从Nʳ到N的函数f,对于r=0,1,2,. . .,我们称r为函数f的元数,即其中变元的数目。哥德尔从三个非常简单的函数开始,初始函数,以及两个自然闭包运算,合成(composition)与原始递归,它们中都每一个都使用某个已经被定义好的函数,然后去定义一个新函数。下面我们将细节性地解释一下他的定义。这节将比较技术化,你跳过了也没啥关系。关键思想是,原始递归函数由一个非常大且强有力的可计算函数类组成,并且所有它们都以非常简单的方式被生成出来。

我们从三个初始的原始递归函数开始:

• ζ为,元数0的零函数(zero function),ζ()=0;

• η为,元数1的恒等函数(identity function),η(n)=n;以及

• σ为,元数1的后继函数(successor function),σ(n)=n+1。

然后考虑下面两个运算:

• Composition:如果f是一个元数α的原始递归函数,以及g₁,. . .,gα为元数r₁,. . .,rα的原始递归函数, 并且k ∈ N,那么下面是一个元数k的原始递归函数:

h(x₁,. . .,xₖ)=f(g₁(ω₁),. . .,gα(ωα))

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

pel:团宠月月 连载中
pel:团宠月月
彤摆烂
看到了我想写一写不要骂人物可以骂我如果不想看就请走网图.如侵权请联系全部是私设pel选手x被家长遗弃的萌娃懒,看文随缘如果你看到了祝您生活愉......
1.1万字1个月前
古欧皇室:Nefelibata 连载中
古欧皇室:Nefelibata
格兰芬多的麦蒂莉
欧洲世界观-教堂尘埃之光[LoveisthelightthatGodsprinklesonhershoulders.]爱是神洒在她肩上的光。......
1.2万字4周前
重铸:繁尽花海 连载中
重铸:繁尽花海
屑鸽子作者
看我看我看我,快来看我啊求你了(இωஇ)Q群:916270014(无聊的作者渴望你加个群,欢迎催更)(本文大致可以算作是前传吧,应该会长期更......
0.1万字4周前
为什么没有人看呵呵 连载中
为什么没有人看呵呵
下原远次呵呵
没有人看我就放飞自我了呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵......
0.2万字4周前
和僵尸闺蜜一起抓鬼 连载中
和僵尸闺蜜一起抓鬼
星梦玉辰
宋雯晴,玄门世家宋家的继承人,年仅19岁就大学毕业。毕业后,她需要历练一番才能继承家业。她受到的第一个委托就是处理掉一座古墓中的邪祟。可是,......
0.7万字4周前
百鸟承欢意 连载中
百鸟承欢意
佩兹Pez
又名《我的工作是挡灾》某天,少女在夜跑时,突然得到了一个神秘的纹身,还被迫加入一个神秘组织。组织的老大对她说:“不干就得凉凉。”于是,少女开......
18.3万字4周前