数学联邦政治世界观
超小超大

Sierpinski 维 (4-3)

Proof. 对于 (S → U(X)) ∈ S/U,T → S 的提升是 (T → S → U(X)). 容易验证典范的态射 Cartesian. □

这个构造可以理解为 "把(S → U(X)) 上的拓扑沿着 T → S 拉回到 T 上".

直观上,(S → U(X)) 说 S 中的每个点对应于 X 中的某个点.

• 如果 S → U(X) 不是单射, 这意味着 (S → U(X)) 有些以 X 的拓扑无法区分的点;

• 如果 S → U(X) 不是单射, 这意味着 (S → U(X)) 有些空出来的拓扑,能容纳更多的点.

Corollary. 如果 C 有终对象且被 U 保持,则 U' 有个全忠实的右伴随 coDisc'.

Proof. 设 C 的终对象是 1,因为 i* 是右伴随, 所以 i*(1) ∈ S/U 也是终对象. 而在 S 中,U(1) ≅ U'◦i*(1) ∈ S 是终对象. 换言之,U':S/U → S 保持终对象. 又因为 U' 是纤维化,所以 U' 有全忠实的右伴随 coDisc'. □

i*

C ─ i* → S/U

↘ ⁄

U'

U ↙

S coDisc'.

Corollary. 如果 C 有终对象且被 U 保持,且 i* 有个全忠实的右伴随 i! , 则 C 有余离散对象.

Proof. coDisc:=i!◦coDisc'.

Corollary. 如果 C 有拉回且被 U 保持,且 C 有余离散对象,则 i* 有右伴随 i!.

Proof. 我们知道在这个条件下, U 有右伴随 coDisc.

定义i!:S/U → C 为:给定 (S → U(X)) ∈ S/U,则态射 S → U(X) ∈ S,coDisc(S) → coDisc(U(X)) ∈ C. 定义它和单位 X → coDisc(U(X)) 的拉回为 i!(S → U(X)). 伴随性容易验证 □

另一方面,

Theorem.

• U 有左伴随 Disc 当且仅当 U' 有左伴随 Disc'.

• U 的左伴随全忠实当且仅当 U' 的左伴随全忠实.

Proof. 设 Disc ⊣ U,定义 Disc':S → S/U 为 Disc'(S)=(S → U(Disc(S))). 其余部分容易验证. □

拓扑空间

Definition. 设 U:C → S 有余离散对象. 称 X ∈ C 具体 (concrete),如果 X → coDisc(U(X)) 是单态射.

等价地,U 在全体以 X 为目标的态射上忠实.

对偶地,设C 有离散对象. 称 X ∈ C 余具体, 如果 Disc(U(Ⅹ)) → X 是个满态射. 等价地,U 在以 X 为来源的态射上忠实.

设C 有终对象且被 U 保持,则 S/U 有余离散对象, 其中的具体对象恰是子终对象.

另一方面, 设C 有离散对象,则 S/U 中的对象 (S → U(X)) 余具体, 当且仅当它的转置 Disc(S) → X 是满态射. 在拓扑系统的例子中,余具体对象恰是拓扑空间.

参考文献

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无有流浪 连载中
无有流浪
夜葵
无有回家第二部
44.7万字9个月前
吾凰在上之惜赤倾霜 连载中
吾凰在上之惜赤倾霜
痕城隐诗熙
一位平凡的人类少女,因为一次车祸穿越到了玄机界,使她拥有了冰之法术和焰之法术,她为了不被别人所发现自己是凰炎国的人因此她需要用冰之法术来压抑......
3.3万字9个月前
胜喜观影:冰霜之心 连载中
胜喜观影:冰霜之心
清君念醉or清灯浊酒
原创第三坑OOC预警私设如山(如果有和原剧不同的地方,一般都是私设)注意避雷哦~不喜勿喷作者学生党,不定时更新(卑微作者现已初三,更新有点悬......
0.6万字9个月前
快穿之我又双叒叕的死了 连载中
快穿之我又双叒叕的死了
墨大帅批
人啊总是有十之八九不好的几率比如我,很巧的就被选中了又很巧的一直死最后又很巧的被黏上了不过没用的,我要做一个冷酷无情的帅哥
6.5万字9个月前
雷狮X安迷修:抑幻药 连载中
雷狮X安迷修:抑幻药
九十四天
——来到魂灵国度哪有相识的恋情。不过是无尽的等待与挂念。都说爱人的眼里有第八大洋,可如果我的爱人看不见我呢?
0.9万字9个月前
兴迪:无与伦比的爱情 连载中
兴迪:无与伦比的爱情
游客1586317682144
世世姻缘,魂梦绥绥佛铃花开又一年,是痴人模样,由山野来,道是有狐寻卿情长。
1.8万字9个月前