数学联邦政治世界观
超小超大

【SEP】数学与哲学直觉主义(一) (11-9)

1 if x is an irrational number

从直觉主义的角度来看,这不是一个合法的函数,因为有理的属性在实数上是不可解的。上面的定理意味着连续体是不可分解的,在van Dalen 1997年,它表明这甚至对无理数集也是成立的。

上述两个例子是连续性公理在直觉主义数学中应用方式的特点。它们是直觉主义中唯一与经典推理相矛盾的公理,因此代表了布劳威尔哲学中最丰富多彩以及最具争议性的部分。

邻域函数

有一种方便的连续函数表示法,在文献中被广泛使用,尽管不是布劳威尔本人所为。将数字分配给无限序列的连续函数可以用邻接函数表示,其中邻接函数 f 是自然数上的一个函数,满足以下两个属性( ⋅ 表示连接和 f ( α ( ¯¯¯ n ) ) 表示f的值 f 在有限序列的代码上 α ( ¯¯¯ n ) ).

α∃nf(α(¯¯¯n))>0 ∀n∀m(f(n)>0→f(n⋅m)=f(n)).

直观地说,如果 f 代表 Φ 则 f ( α ( ¯¯¯ n ) ) 0 意味着 α ( ¯¯¯ n ) 不够长,无法计算出 Φ ( α ) ,而 f ( α ( ¯¯¯ n ) ) m + 1 意味着 α ( ¯¯¯ n ) 是足够长的时间来计算 Φ ( α ) 的值,并认为 Φ ( α ) 是 m . 如果 K 表示邻接函数的类别,那么连续性公理 C - N 可以被改写为:

∀α∃nA(α,n)→∃f∈K∀m(f(m)>0→∀β∈mA(β,f(m−1))),

其中 β ∈ m 表示初始段的代码为 β 是 m .

3.6 条形定理(The bar theorem)

布劳威尔引入了选择序列和连续性公理来捕捉直觉上的连续,但仅凭这些原则并不足以恢复布劳威尔认为直觉上合理的那部分传统分析,如闭区间上的每个连续实函数都是均匀连续的定理。出于这个原因,布劳威尔证明了所谓的巴氏定理。这是一个经典的有效陈述,但布劳威尔给出的证明被许多人认为根本不是证明,因为它使用了一个关于证明形式的假设,而这个假设没有提供严格的论证。这就是条形定理也被称为条形原则的原因。

条形定理最有名的结果是扇形定理,它足以证明上述关于均匀连续性的定理,我们将首先处理它。扇形定理和条形定理都允许直觉主义者沿着某些有根基的对象集合使用归纳法,这些对象被称为传播。散布是集合的直观类似物,它抓住了无限对象不断增长且永不结束的想法。散布本质上是一棵可数分支的树,用自然数或其他有限对象标记,只包含无限的路径。

扇形是一个有限分支的散布,扇形原理表达了一种紧凑性的形式,在经典上等同于柯尼希定理,其经典证明从直觉的角度看是不可接受的。该原则指出,对于每个扇形 T 中,每一个分支在某一点上都满足一个属性 A ,在满足该属性的深度上有一个统一的约束。这样的属性被称为T的条形 T。

(FAN)∀α∈T∃nA(α(¯¯¯n))→∃m∀α∈T∃n≤mA(α(¯¯¯n)).

这里 α ∈ T 表示 α 是T的一个分支 T . FAN原则足以证明上述定理:

定理(FAN) 闭区间上的每个连续实函数都是均匀连续的。

Brouwer对扇形定理的论证是他的普遍传播的条形原则:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

蝶翊夜舞 连载中
蝶翊夜舞
夜云暖星
凤蝶舞,一个传奇的女子,这个名字曾让四界敬仰,震撼,胆怯,修为更是逆天,世人皆言:身为人界之主弟子的她,让人界苍生敬仰的她,为人界立下无数战......
14.4万字8个月前
万家灯火,曲终人散 连载中
万家灯火,曲终人散
百香果的八倍镜
一个问题引发的“惨案”
40.0万字8个月前
我终究是负了你 连载中
我终究是负了你
凤柒玖
前世,她知晓他的一切,却一生欢喜未能如愿。今世,她知晓他的欢喜,却终究是负了他。
11.5万字8个月前
赵龙记之再见公主 连载中
赵龙记之再见公主
李师冰
因为第一部,比较多先把这一部一过来这是第二部。皇上看见一个和自己女儿很像的女生就把他收为了烈阳公主。已签约作品已完结【竹影】文斋残月西楼,踏......
10.4万字8个月前
怪物大师之步步路的姐姐 连载中
怪物大师之步步路的姐姐
墨冰翊
1.8万字8个月前
冰窟求生:我有隐藏提示系统 连载中
冰窟求生:我有隐藏提示系统
月落之海
『已完结』全国人民来到了冰窟求生的世界,而我们的主角却有隐藏提示,但他似乎跟自己有很大的牵连......咳咳....多说无益,请移正文
4.0万字8个月前