注意到,这篇文章的推荐人是哥德尔,其中一个主要原因(据Cohen自述)是Cohen本身不是数理逻辑出身,他博士期间的方向是分析学,是芝加哥分析学派创始人Antoni Zygmund的直系弟子。由于芝加哥当时数理逻辑氛围也很浓厚,所以Cohen很多同事朋友都是做逻辑的,他也耳濡目染了不少,解决连续统假设和选择公理的独立性问题的兴趣也是在博士期间就有了萌芽,但是一直没有正式地跟别人沟通,所以在做出来力迫法之后才觉得只有哥德尔的背书才能让这份工作被逻辑学圈子认可。
至于哥德尔,读了初稿后,给Cohen的回复是:“Your proof is the very best possible. Reading it is like reading a really good play.(你给出了理论上的最优证明,读起来就跟赏析优秀剧本一样赏心悦目)”
力迫法的发明,直接给当时算得上走投无路死气沉沉的集合论注入了新生命,为接下来好几代的集合论学者创造了饭碗。如今许多数理逻辑的内容,都能看到力迫法的影子。比较直接的比如说公理研究中的力迫公理,比如说去年Schindler和Aspero发在Annals of Mathematics上的Martin's Maximum++ implies Woodin's axiom (∗) 。再来就是力迫偏序为实数集带来的全新认识,特别是测度与纲的创新跨领域视角,例如这方面的开山鼻祖,Solovay 1970年发在Annals of Mathematics上的A Model of Set-Theory in Which Every Set of Reals is Lebesgue Measurable,从今天的非集合论视角来看相当于为【Borel集 模掉 对称差零测】和【Borel集 模掉 对称差为第一纲集】这两个代数结构提供了一个拓扑的研究视角。更不用说当年随随便便就能发Annals的用力迫法处理各种反选择公理模型的工作了。
间接点来说,今天的布尔值模型,到更抽象点的Topos理论,都能在力迫法的早期形态中找到一些根源。模态逻辑的Kripke语义学在今天用力迫符号来表示满足关系,也相当于是致敬了它跟集合论中力迫关系定义的相似性。
顺道说一句,1966年Cohen那届菲尔兹奖是第一次将获奖人数扩充到四人。看看这获奖名单,个个都是神仙
1966 Moscow,USSR
Michael Atiyah University of Oxford, UK
Paul Cohen Stanford University,US
Alexander Grothendieck
Institut des Hautes Études Scientifiques, France
Stephen Smale
University of California,Berkeley,US
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。