数学联邦政治世界观
超小超大

Cayley定理 (3-1)

我来举一个最简单的例子抛砖引玉。群论中著名的Cayley定理其实就是Yoneda lemma的特殊情况

Cayley定理:每个群都同构于某个对称群的某个子群。

为了看清两者之间的关系,我们令C 表示只有一个对象 • 的(局部小)群胚,因此 G=Homᴄ(•,•) 在态射的复合下构成一个群(并且,显然的,任何一个群都能被这样实现)。那么,一个协变函子 C → Set 就由一个集合 X 和一个群同态 G → Perm(X) 组成,从而 X 是一个 G-set,而协变函子之间的自然变换就是 G-set之间的等变映射(equivariant map)。因此, Hom (•,–) 就对应 G 左乘自己而定义的群作用。由Yoneda lemma,自然变换的集合 Nat(Hom(•,–),Hom(•,–)) ≅ Hom(•,•)。另一方面,我们不难知道,等式左边在复合运算下构成群 Perm(G) 的一个子群,而且这个集合范畴内的同构也是一个群同态。因此 G 同构于 Perm(G) 的一个子群。这就是Cayley定理。

当然,以上只是局部小范畴的Yoneda lemma的一个运用。但我们对于一个对称闭幺半范畴ν=ν₀,⨂,l,α,λ,ρ (ν₀ 是局部小且完备的)上的一个充实范畴(enriched category) A ,也有(strong) Yoneda lemma[1]:

(strong) Yoneda lemma:给定一个ν -函子 F:A → ν 及一个 A -对象 K ,我们有一个对于 A 的 ν -自然的映射 Fᴋᴀ:A(K,A) → [FK,FA],它在伴随 ν₀(X,[Y,Z]) ≅ ν₀(Y,[X,Z])下的转换 фᴀ:FK → [A(K,A),FA] 也是 ν -自然的。(strong) Yoneda lemma宣称, фᴀ 将 FK 表示为end ∫ᴀ[A(K,A),FA] ,使得我们有同构 ф:FK ≅ [A,ν](A(K,–),F)

它是局部小范畴的Yoneda lemma的推广(我们取ν=Set 就回到局部小范畴的Yoneda lemma)。

Remark 2.1.14. There is a natural way for sPr(C) to be enriched over Set such that S ⨂ P=∐ₛ∈s P ≅ S × P where P is a presheaf and S is a set viewing it as a constant presheaf as well. Then the above lemma actually says P ≅ ∫ᶜ∈C P(c) ⨂ h(c) is the coend. For a simplicial version you can look at the Definition A.5.17.

For a presheaf P:Cᵒᵖ → Set,we can define a Cᵒᵖ-indexed diagram Dᴘ in Pr(C) such that for any object c of C,Dᴘ(c) is the constant presheaf Pᴄ of the set P(c). Then ∫ᶜ∈Cᵒᵖ h(c) × Dᴘ(c) is just ∫ᶜ∈C P(c) ⨂ h(c) since ∐ h(c') Ⅱ (h(c') ≅ ∐(h(c') × Pᴄ).Therefore P ≅ ∫ᶜ∈Cᵒᵖ h(c) × Dᴘ(c).

注意:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

南堉 连载中
南堉
_沂州
我无数次轮就是为了拯救你
1.0万字1个月前
探枝的电子日常 连载中
探枝的电子日常
探枝
我的日常生活的发疯
0.0万字4周前
临安烟花醉 连载中
临安烟花醉
宴珩听
女频 古言脑洞 幻想言情 前世今生前世——她在高台,等夫君而归.等来的却是她夫君的一箭射心而死.她到死也没明白,那么爱他的夫君,得胜归来却要......
1.8万字4周前
脑动集 连载中
脑动集
日落山丘
一些脑洞,原创的同人的都有,我自个儿比较上心的也有。爱看看,不看退。
2.5万字4周前
超凡荣耀 连载中
超凡荣耀
唯爱雪子大大
【不定时更新】主角被弟弟陷害和爱人一同穿梭到另一个世界这里是荣耀大陆,他和她将在这里重新开始自己的人生
26.4万字4周前
天下为倾 连载中
天下为倾
一夜千倾
21世纪的少女穿越异世收美男(划掉)神器,神兽,偶然间觉醒,发现自己是时间守护者?璇机篇(已开启)神界篇(侍开启)宇宙篇(待开启)一女N男女......
4.9万字4周前