数学联邦政治世界观
超小超大

Cayley定理 (3-2)

∐ ∐

u:c' → c,p∈P(c) u:c' → c

Lemma 2.1.15. If F is α simpliciαl presheαf αnd ωe define α Δᵒᵖ-indexed diαgrαm in sPr(C) such thαt it sends [n] to Fₙ,ωhich is α presheαf of sets but ωe υieω it αs α discrete simpliciαl presheαf.

Then the geometric reαlizαtion |DF| is just F.

Proof. In Definition A.5.17,we have |Dғ|=△⨂ Δᵒᵖ Dғ=∫[ⁿ]∈Δᵒᵖ Δⁿ ⨂ Dғ([n]).

For a fixed object c of C,we obtain |Dғ|ᴄ=∫[ⁿ]∈Δᵒᵖ Δⁿ ⨂ Dғ([n],c). Since Dғ([n],c) is just the constant simplicial set of Fᴄ([n]), from the remark above we see it will be isomorphic to Fᴄ. Therefore |Dғ| ≅ F.□

Lemma 2.1.16.Under αssumptions αbουe,in sPr(C)ᵢₙⱼ the Bousfield-Kαn mαp hocolimDғ → |Dғ| is α ωeαk equiυαlence. And therefore hocolimDғ is ωeαkly equiυαlent to F.

Proof.In sPr(C)ᵢₙⱼ cofibrations are just objectwise cofibrations and in sSet cofibrations are injective maps.

Therefore any object F in sPr(C)ᵢₙⱼ is cofibrant. Then from Definition A.5.22,for any simplicial object X in sPr(C)ᵢₙⱼ its homotopy colimit is computed by the coend N(– ↓ Δ ᵒᵖ)ᵒᵖ ⨂Δᵒᵖ X. Fixing the object c of C,Xᴄ will be a simplicial object in sSet and its homotopy colimit is just the value of hocolimX on c. From Corollary A.5.30 we see the map hocolimXᴄ → |Xᴄ| is a weak equivalence. But |Xᴄ|=|X|(c),this means the Bousfield-Kan map hocolimX → |X| is an objectwise weak equivalence. Especially when X=Dғ,hocolimDғ → |Dғ| is a weak equivalence. □

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

世终梦 连载中
世终梦
繁荣星_苏皓
“似梦非梦,神魔皆在,一改既是一世,命终……魂归。”
0.9万字11个月前
严浩翔的孕期日常 连载中
严浩翔的孕期日常
贝斯手Y严
孕期小日常啦
0.1万字11个月前
果宝机兽联盟之战 连载中
果宝机兽联盟之战
粉红雨蝶
这人很懒,啥都没写。
5.5万字11个月前
古月心世爱 连载中
古月心世爱
温风初暖
一世的转世,被称为“妖人”身有邪气。她觉得自己是世界上最幸福的人,拥有曾经从没有过的,成为天下最厉害的掌门徒弟。年少的她却喜欢自己的师父,真......
12.5万字11个月前
异人七战将 连载中
异人七战将
花少336
陈福,本是21世纪的大好青年,奈何意外魂穿,进入武灵世界,成为一个绝世废材。阴谋围绕,路途多舛,穿越少年能否在六位伙伴的陪伴下逆袭为王?美女......
11.4万字11个月前
仙缘少女 连载中
仙缘少女
北月西
21世纪少女因游戏穿越,到得云灿梦大陆,遇两大帅哥,成绝顶高手,灭六国,统一大陆……本书数字版权由“讯读”提供并授权话本联合销售,若书中含有......
79.5万字11个月前