数学联邦政治世界观
超小超大

集合论及其发展历程 (3-1)

▆▆▆▆▆▆▆▆▆▆▆▆▆ T=0

▆▆▆▆▆▆ ▆▆▆▆▆ T=1

▆▆ ▆▆ ▆▆ ▆▆ T=2

∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ T=3

▮ ▮▮▮ ▮▮ ▮▮T=4

║▏││▏▏││▏║║│▏

▏│║▏│║│▏▏││▏▏│T=5

║▏▏▏▏║│▏

▏│▏│▏▏▏▏T=6

康托尔三分集

集合论及其发展历程

一个关于无限集合元素问题:无理数集与有理数集的元素个数一样多吗?这是一个无穷与无穷个数的比较,很多人会认为是一样多的(和小杨开始想的一样哈),因为同样是无穷,都是一样多的,而且无理数与有理数也是你中有我,我中有你的关系。但是无理数的个数却是远远多于有理数的,这是为什么呢?接下来要引出我们的主角——集合论,来解决这一问题。

集合论是什么?

集合论,顾名思义,就是与集合有关理论,同数论、群论的论的含义差不多吧!集合论,是基础性的数学分支,研究一般集合的大小、结构,集合之间的关系、各种运算,以及讨论集合的计数、排序的方法、建立各种无穷集合的理论,是数学中最基本的理论基础之一。作为其他数学分支的理论基础,例如高等概率的测度定义、实变函数论的基础——点集论、极限“ε-N”的集合表示等等,有着较为广泛的应用。集合论是近代数学发展的产物,经历了古典(朴素)集合论、公理集合论两个阶段的不断完善。

集合论发展历程:

古典集合论:说到古典集合论,我们不得不先介绍一下其背后贡献最大的数学家——康托尔(为数学而“疯”的数学家),他是古典集合论的创始人,完善了古典集合论的大部分基础理论,对于集合论的产生,占有举足轻重的地位。康托尔于1845年3月3日出生于俄国圣彼得堡,从小对数学有着浓厚的乐趣,1863年进入柏林大学,之后取得哈勒大学的教授职位,从此一直从事着集合论的创立工作。

黎曼于1854年在论文《关于用三角级数表示函数的可能性》中提出函数的三角级数表示的唯一性问题,1870年,康托尔受邀海涅解决这一问题,他在1871-1872年间,逐步把三角级数展开的唯一性条件推广到允许例外值成为无穷的情况,认识到了无穷集合的重要性,这是集合论产生的一个直接原因。

1873年,康托尔在于戴金德的来信中,宣布证明了实数集是不可数的,这一年被称为集合论的诞生年。1874年,康托尔在论文中断言:所有实代数数的集合是可数的,所有实数的集合是不可数的,因此非代数数的超越数是存在的,而且远远多于代数数。康托尔的证明引起了许多数学家的反驳。但是康托尔冒着被称为“神经病”的称号,依然坚持着自己对于集合论的研究。

1878年,康托尔提出一一对应的概念,作为判断两个集合对等的充要条件。所谓以一一对应,可以理解为:两个集合的元素通过映射,可以建立满射关系,一一对应包含了集合元素基数(也称势,即元素个数)相等,这是研究无穷集合的一个重要概念。用阿列夫0代表自然数集的势,用c代表实数集的势,运用一一对应比较各种无穷集合的大小,其中,无穷集合与有限集合最大的区别在于:无穷集合可以与其子集建立一一对应关系,例如整数与偶数建立一一对应关系,两者的势是相等的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

数学联邦政治世界观 连载中
数学联邦政治世界观
拓崇
原创数学类小说,以构造圈数学量级为发展目标。
2852.4万字8个月前
这个作品叫作品 连载中
这个作品叫作品
好机会🙄💅
小学生文笔不要骂我啊(虽然上初中了。。。)就写来玩玩的
0.3万字8个月前
如何杀死我最好的朋友 连载中
如何杀死我最好的朋友
青衫江逸
“杀一个人要分几步?”“选择一种杀人方法,找一个作案地点,杀掉对方,然后把尸体处理掉”“似乎并不难”“杀死你最好的朋友需要分几步?”“这个就......
0.5万字8个月前
灵云传 连载中
灵云传
菲小猪
灵狐族领袖裘清媚历劫归来带领妖族正兴,畅游三界
7.0万字8个月前
斗龙破天换月-d923 连载中
斗龙破天换月-d923
完美人生_790575657432561
1.5万字8个月前
灵感故事短篇合集 连载中
灵感故事短篇合集
德元
因为忙所以偶尔更新小故事,每个故事字数不一样,类型看灵感,大多数是第一人称。原创勿盗!!!
3.3万字7个月前