problems with that structure turn up - - what a striking coincidence that so many situations can be described mathematically! There’s also ‘selective memory': you notice the case
where it works and forget the cases where it didn't; how amazing that it works so often!
Think of all the worldly situations that can’t be effectively modeled mathematically. Orthere’s the ‘law of large numbers': in a population of 250 million, a ‘million to one chance happens 250 times; with the huge range of well-studied pure mathematical structures, it's not surprising that some of them find application. As I listened to Diaconis's lecture, I
realized that each one of the errors that lead us so naturally to think there’s a coincidence demanding explanation (e.g., this person must be reading my mind!), could also lead us to think that the applicability of mathematics is an amazing coincidence.
中文翻译:3:AM:有一个困惑,似乎出现在你的方法是不是有。如果数学不是以形而上学的真理为基础,那么它为什么在具体的世界中如此富有成效?你如何看待所谓的数学奇迹的一面?你的理论是一种亚布罗主义的虚构主义吗?
PM:老实说,我不确定将数学根植于一个抽象的世界,与我们无缘,这将如何帮助解释为什么它在应用程序中如此出色。无论如何,我对所谓的“应用数学奇迹”的理解是,它并不是真的那么神奇。多年前,当我认真思考这个问题时,碰巧听到了Persi Diaconison的讲座。迪亚康尼斯是一位专业的统计学家,同时也是一位魔术师,也是一位著名的精神现象的揭露者。其中一些揭露涉及到心理学和统计学观察,这些观察似乎是惊人的巧合。一种是“新单词”现象:你学了一个新单词,然后在接下来的24小时里,由于荒谬的巧合,你突然听到了它三次!但这当然不是荒谬的巧合;现在你知道了这个单词,你注意到了它。同样,当你发现一种数学工具可以解决某种问题时,你往往会注意到,当这种结构出现问题时--多么惊人的巧合,这么多情况都可以用数学来描述!还有“选择性记忆”:你会注意到它起作用的情况,而忘记它不起作用的情况;它经常起作用,这是多么令人惊讶啊!
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。