数学联邦政治世界观
超小超大

实数理论 (8-1)

最前的前言

1. 互推关系

Dedekind 连续性公理 ⇔ 确界原理(公理) ⇔ 单调收敛定理 ⇔ 闭区间套定理(+ 阿基米德原理) ⇔ 有限覆盖定理 ⇔ 致密性定理 ⇔ 柯西收敛原理 ⇔ 聚点原理

1.1 Dedekind 连续性公理

Dedekind 分割:A,B 是 R 的两个子集,满足 A∪B=ℝ,A∩B=∅,A ≠ ∅,B ≠ ∅ 且对任何 α ∈ A,b ∈ B 都有 α<b ,则称 (A,B) 为 ℝ 的一个分割.

Dedekind 连续性公理:

对于ℝ 的任何分割,都存在唯一的 x* ∈ ℝ ,使对所有 α ∈ A 和 b ∈ B ,都有 α ≤ x* ≤ b .

1.2 确界原理

确界:

1 如果数集S 的上界集中有最小元,则称之为 S 的上确界,记为 sup S ;

2 如果数集S 的下界集中有最大元,则称之为 S 的下确界,记为 inf S .

注1:sup 是supremum 的缩写,inf 是infimum 的缩写.

注2:上确界的另一种翻译是least upper bound,下确界的另一种翻译是greatest lower bound. 这种翻译实

际上蕴含了它们实际上是最小上界和最大下界.

定理: β 是数集 S 的上确界的充分必要条件是:

1 对任意x ∈ S ,都有 x ≤ β ;

2 对任意ε>0 ,都存在 x₀ ∈ S ,使得 x₀>β–ε .

命题: β 是数集 S 的上确界的充分必要条件是:

1 对任意x ∈ S ,都有 x ≤ β ;

2 存在数列{xₙ} ⊆ S,使得 lim xₙ=β .

n→∞

确界原理(此处作为公理):

有上界的非空数集必有上确界.

注1: 这里选择确界原理当做公理,但实际上也可以选择其他理论作为公理.

注2: 某种约定有sup ∅ = −∞, inf ∅ = +∞.

注3:在确界原理的基础上我们容易得出:有下界的非空数集必有下确界.

注4:一个小命题:sup{|x − y| | x, y ∈ S} = sup S − inf S.

1.3 单调收敛定理

(1) 若数列{xₙ} 单调递增且有上界,则

lim xₙ=sup{xₙ│x ∈ ℕ*};

n→∞

(2) 若数列 [公式] 单调递减且有下界,则

lim xₙ=inf{xₙ│x ∈ ℕ*}.

n→∞

1.4 区间套定理

设[αₙ,bₙ] 是一列闭区间,满足:

(1) [αₙ₊₁,bₙ₊₁] ⊆ [αₙ,bₙ],n=1,2,3,· · ·;

(2) lim (bₙ – αₙ)=0 .

n→∞

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

焕冥星之约 连载中
焕冥星之约
坠落的星海
(封面因为忘记改名字了,反应过来时,已经做好了,将就一下吧)宇宙中有88个星座,分别是:南天星座、北天星座和黄道星座(就是十二星座)其中北天......
0.4万字1个月前
执笔写尽天下事 连载中
执笔写尽天下事
海洋藏碎念
群像,微虐.若从一开始,没有希望,是不是就不会这么心痛了?“我不会死的,我会活在你们心里。”……“你要视天下为己,弃我于不顾。”“我会等你一......
1.9万字4周前
猪猪侠,你的马甲掉了 连载中
猪猪侠,你的马甲掉了
萧如秋
航猪cp,猪猪侠掉马甲
0.6万字4周前
攻略男主我最行 连载中
攻略男主我最行
池尘
这个系统有点撩啊~
6.6万字4周前
笑死,根本逃不出他的掌心 连载中
笑死,根本逃不出他的掌心
可怜的猫咪
[请勿抄袭]一个被称为“大佬级别的摆烂达人”苏诺,在去学校上学的路上好死不死的被“不知明的东西”给砸晕死了过去。醒来时已经在人生地不熟的地方......
5.8万字4周前
煞星转世有喜了 连载中
煞星转世有喜了
闲云花巳奇迹小说家
你有没有想过,也许人世间是由煞星在守护。上惩下界作乱的仙君,下布煞气于行止不端的世人。以至于天界众仙都道,宁得罪喜星千次,不得罪煞星一次。而......
50.4万字4周前