数学联邦政治世界观
超小超大

终极L(数学论文)一 (14-8)

(1) N=L(N) ∩Vλ₊₂ and crit(j)<λ;

(2) Nλ ⊆ L(N);

(3)for all F:Vλ₊₁ → N \ {∅} such that F ∈ L(N) there exists G:Vλ₊₁ → Vλ₊₁ such that G ∈ N and such that for all A ∈ Vλ₊₁,G(A) ∈ F(A).

We shall state one claim that makes reference to Laver’s axiom at the end of Section 6,but shall not refer to it further duringthis section.

Definition 3.2.We define the sequence〈E⁰α(Vλ₊₁):α<ΥVλ₊₁〉to be the maximum sequence such that the following hold.

(1)E⁰₀(V₊₁)=L(V₊₁)∩Vλ₊₂ and E⁰₁(Vλ₊₁)=L((Vλ₊₁)#)∩Vλ₊₂.

(2)Suppose α<ΥVλ₊₁ and α is a limit ordinal. Then E⁰α(Vλ₊₁)=L(U {E⁰ᵦ(Vλ₊₁):β<α})∩Vλ₊₂.

(3)Suppose α+1<ΥVλ₊₁. Then for some X ∈ E⁰α₊₁(Vλ₊₁),E⁰α(Vλ₊₁)<X,where by this we mean that there is a surjection π:Vλ₊₁ → E⁰α(Vλ₊₁) with π ∈ L(X,Vλ₊₁),and B⁰α₊₁(Vλ₊₁)=L(X,Vλ₊₁)∩Vλ₊₂,and if α+2<ΥVλ₊₁ then E⁰α₊₂(Vλ₊₁)=L((X,Vλ₊₁)#)∩Vλ₊₂.

(4)Suppose α<Υλ₊₁. Then there exists X ⊆ Vλ₊₁ such that E⁰α(Vλ₊₁) ⊆ L(X,Vλ₊₁) and such that there is a proper elementary em-bedding j:L(X,Vλ₊₁) ≺ L(X,Vλ₊₁),where this means that j is non-trivial with critical point below λ,and for all X' ∈ L (X,Vλ₊₁)∩Vλ₊₂ there exists a Y ∈ L(X,Vλ₊₁)∩Vλ₊₂ such that 〈Xᵢ:i<ω〉∈L(Y,Vλ₊₁),where X₀=X' and Xᵢ₊₁=j(Xᵢ) for all i ≥ 0.

(5) Suppose α<ΥVλ₊₁,α is a limit ordinal, and let N=E⁰α(Vλ₊₁).Then either

(a) (cof(𝚹ᴺ))ᴸ⁽ᴺ⁾<λ,or

(b)(cof(𝚹ᴺ))ᴸ⁽ᴺ⁾>λ and for some Z ∈ N,L(N)=(HODVλ₊₁∪{Z})ᴸ⁽ᴺ⁾.

Here 𝚹ᴺ=sup{𝚹ᴸ⁽ˣ,ⱽλ⁺¹⁾:X ∈ N} where 𝚹ᴸ⁽ˣ,ⱽλ⁺¹⁾ is the supremum of the ordinals γ which can serve as the codomain of a suriection with domain Vλ₊₁ where the surjection is an element of L(X,Vλ₊₁).

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

虽然她是绿茶,但她茶的是我诶 连载中
虽然她是绿茶,但她茶的是我诶
夜未央_5892473271868776
0.2万字9个月前
彼岸的逝言2水月镜花 连载中
彼岸的逝言2水月镜花
岚嬗晴雪
续【彼岸的逝言】花开叶落不相知,各自天涯各自痴。缘灭缘生空自叹,来生彼岸化相思。
0.3万字8个月前
我是你的救世主 连载中
我是你的救世主
湖水映中庭
陆曌空是古代位面主管,也负责把不适合他这个位面的人输送到别的位面,比如,他那次不小心遇到了林黛玉,觉得如果不把她送离这个朝代,肯定就是少年夭......
12.8万字8个月前
在云朵上打盹 连载中
在云朵上打盹
云裳珺
——是个文案管
14.6万字8个月前
羁绊fetter 连载中
羁绊fetter
185***810_8776763803
相聚是缘,感恩感谢
0.2万字8个月前
喜美恋之吸血鬼的新娘 连载中
喜美恋之吸血鬼的新娘
铃蝶中的诺儿
这人很懒,啥都没写。
1.1万字8个月前