数学联邦政治世界观
超小超大

终极L(数学论文)一 (14-7)

Proof. Suppose that κ is an I2 cardinal and let the elementary embed-ding j:V ≺ M with critical point κ witness that κ is an I2 cardinal, the supremum of the critical sequence being δ . If we let U be the ul-trafilter on κ arising from j we can easily show that the set of κ'<κ such that there is an elementary embedding kκ':Vδ ≺ Vδ,with critical sequence consisting of κ' followed by the critical sequence of j,is a member of U (denoted by X hereafter). Then the sequence of ordinals belonging to this set,together with a family of embeddings that can be derived from the sequence of embeddings 〈kκ':κ' ∈ X〉witness that κ is hyper-tremendous. Since it also follows that is hyper-tremendous in M,the desired result follows. ▢

This completes the proof that the α-tremendous cardinalsand hyper-tremendous cardinals have consistency strength strictly between I3 and I2. In the next section we discuss the consistency strength of α-enormous and hyper-enormous cardinals.

3. CONSISTENCY STRENGTH OF α-ENORMOUS AND

HYPER-ENORMOUS CARDINALS

We wish to show that α-enormous cardinals and hyper-enormous cardinals have consistency strength greater than any previously con-sidered large-cardinal axiom not known to be inconsistent with ZFC.

6 MCALLUM

We shall begin by defining some large-cardinal axioms discussed in[2].

Definition 3.1. We say that an ordinal A satisies Laver’s axiom if the following holds.There is a set N such that Vλ₊₁ ⊆ N ⊊ Vλ₊₂ and an elementary embedding j:L (N) ≺ L(N),such that

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快乐修仙队 连载中
快乐修仙队
星落凝成精
女仙帝带着凡间大部分女生和小部分男生修仙,成为有名的灵安宗,妹子们练成后也会来帮助凡间女子脱离哭海
2.2万字11个月前
文娱:偶像作曲人 连载中
文娱:偶像作曲人
婉婉不早安
【系统文+无cp+作曲】沈晴雨怎么也想不到自己一个还没大学毕业的大学生,能遇到这种机遇,被系统签约,成为3033年系统协会的公务员,不仅有六......
7.2万字11个月前
阿染的发疯日常 连载中
阿染的发疯日常
豆腐不写诗
发癫
1.7万字11个月前
他说爱意无期 连载中
他说爱意无期
wwxjd
【双向救赎文,不定期更新番外篇】【禁止抄袭】“如果没有暮江吟时小念早就死了,但是如果没有时小念世上就不会有暮江吟,所以她们的相遇是命中注定”......
12.8万字11个月前
封神英雄之姜沁 连载中
封神英雄之姜沁
上官泠鸢
0.2万字11个月前
思菲记 连载中
思菲记
一只大傻逼
日记
5.7万字11个月前