数学联邦政治世界观
超小超大

终极L(数学论文)一 (14-7)

Proof. Suppose that κ is an I2 cardinal and let the elementary embed-ding j:V ≺ M with critical point κ witness that κ is an I2 cardinal, the supremum of the critical sequence being δ . If we let U be the ul-trafilter on κ arising from j we can easily show that the set of κ'<κ such that there is an elementary embedding kκ':Vδ ≺ Vδ,with critical sequence consisting of κ' followed by the critical sequence of j,is a member of U (denoted by X hereafter). Then the sequence of ordinals belonging to this set,together with a family of embeddings that can be derived from the sequence of embeddings 〈kκ':κ' ∈ X〉witness that κ is hyper-tremendous. Since it also follows that is hyper-tremendous in M,the desired result follows. ▢

This completes the proof that the α-tremendous cardinalsand hyper-tremendous cardinals have consistency strength strictly between I3 and I2. In the next section we discuss the consistency strength of α-enormous and hyper-enormous cardinals.

3. CONSISTENCY STRENGTH OF α-ENORMOUS AND

HYPER-ENORMOUS CARDINALS

We wish to show that α-enormous cardinals and hyper-enormous cardinals have consistency strength greater than any previously con-sidered large-cardinal axiom not known to be inconsistent with ZFC.

6 MCALLUM

We shall begin by defining some large-cardinal axioms discussed in[2].

Definition 3.1. We say that an ordinal A satisies Laver’s axiom if the following holds.There is a set N such that Vλ₊₁ ⊆ N ⊊ Vλ₊₂ and an elementary embedding j:L (N) ≺ L(N),such that

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

维尔汀 连载中
维尔汀
叹红不望月
人类少女维尔汀因为一场意外来到了过去,在一场奇遇下与当时的地灵--高卢签订了契约。在契约下,她见证了自己祖国的历史。从人类到国灵,在滚滚历史......
1.0万字6个月前
长情许 连载中
长情许
叫小奇
双男+穿越攻略+幻想小说傲娇的公子哥x腼腆的少年
4.2万字5个月前
星拟:迷宫 连载中
星拟:迷宫
桶中加尿泼谁谁发疯
『停更中…』“迷宫中隐藏的秘密是什么呢?”“迷宫……就像人心一样复杂难解,难以走出去。”“呵,你觉得能来到迷宫的人能是什么好人?”“等你走出......
2.5万字5个月前
刺客伍六七(自创)第三季 连载中
刺客伍六七(自创)第三季
支持七三不是柒三
没啥可写的
2.1万字5个月前
花语程行之乱世纷争 连载中
花语程行之乱世纷争
一颗茶籽
第五世,恰逢乱世
3.7万字5个月前
末日降临之崩坏龙王 连载中
末日降临之崩坏龙王
九冥玄月
当末日遇到龙族and人族女霸会发生怎么样的事?[推文新书《死亡维度笔记》]
5.0万字5个月前