数学联邦政治世界观
超小超大

Baire范畴定理 (10-1)

Baire范畴定理在泛函分析中有着十分重要的作用. 泛函分析四大定理中的三个, 即一致有界性原理、开映射定理和闭图像定理, 它们的证明都需要用到Baire范畴定理. 本文将给出Baire范畴定理及其证明, 同时还将给出上述三个定理及其证明, 并给出它们的一些应用.

1. Baire范畴定理

定义1. 设 (X,d) 为度量空间,M⊂X. 若 ˉM 无内点, 则称 M 为无处稠密的. 若 M 可以表示成 X 中可数个无处稠密子集的并, 则称 M 为 X 的第一范畴子集. 若 M 不为 X 的第一范畴子集, 则称 M 为 X 的第二范畴子集.

定义2. X 的一个子集称为是泛型子集, 若它的补集是第一范畴子集.

定理1 (Baire范畴定理). 设 (X,d) 为非空完备度量空间, 则 X 作为 X 的子集是第二范畴的.

证明. 采用反证法, 假设 X 是无处稠密子集 Fₙ 的可数并,即

X=⋃∞ n=1 Fₙ. (1)

通过将 Fₙ 替换为它的闭包, 我们可以假设每一个 Fₙ 是闭集. 现在只要找到一个点 x∈X 但 x∉∪Fₙ 即可.

由于 F₁ 是闭的并且是无处稠密的, 因此 Fᶜ₁ 是非空开集, 于是存在半径为 r1>0 的开球 B₁ 它

──

的闭包 B₁完全包含在 Fᶜ₁ 中.

由于 F₂ 是闭的并且是无处稠密的, 因此球 B₁ 不可能完全包含于 F₂, 否则 F₂ 就有非空的内部. 于是 Fᶜ₂∩B₁ 是非空开集, 从而存在半径为 r₂>0 的球 B₂ 它的闭包包含于 B₁ 和 Fᶜ₂. 显然, 我们可以选取 r₂ 使得 r₂<r₁/2.

重复这一过程, 我们得到一列球 {Bₙ} 满足如下性质:

(i) 当 n → ∞ 时 Bₙ 的半径趋于 0.

(ii) Bₙ₊₁ ⊂ Bₙ.

───

(iii) Fₙ∩Bₙ 为空.

选择 Bₙ 的任意点 xₙ,那么由于上面的性质(i)和(ii) {xₙ}∞ₙ₌₁ 是柯西列. 由于 X 是完备的, 这个序列收敛到某一极限点, 记作 x. 由(ii)可知

──

x∈Bₙ 对每一个 n 成立, 因此根据(iii)可知 x∉Fₙ 对所有 n 成立. 这与(1)式矛盾,这就完成了对Baire范畴定理的证明.

推论2. 完备度量空间的泛型子集是稠密的.

证明. 采用反证法, 假设 M ⊂ X 是泛型子集但不是稠密的. 那么存在完全包含于 Mᶜ 闭球

──

B. 由于 E 是泛型子集,它的补集可以写成 Eᶜ=∪∞ₙ₌₁ Fₙ,其中每一个 Fₙ 都是无处稠密的,因此

── ──

B=⋃∞ₙ₌₁(Fₙ∩B).

── ──

显然 Fₙ∩B 是无处稠密的. 由于 B 是完备度量空间,因此上式与Baire范畴定理相矛盾. 这就完成了推论的证明.

1.1. 连续函数序列极限的连续性

定理3. 假设 {fₙ} 是完备度量空间 X 上的一列连续复值函数, 并且

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

奇幻之旅,梦幻未来 连载中
奇幻之旅,梦幻未来
令狐倾梧
灵启泽与汪晓夕,一对自小相伴的青梅竹马。与他们各自的挚友——刘夜羽、赵欣月、程雪夕、凌幽燃、顾云城、王明泽、白凌虎、霍言博。共同编织着青春的......
1.3万字4周前
轮回九世之轮回一世 连载中
轮回九世之轮回一世
堂埃
一位小男孩儿,希望自己有美好的人生选择了轮回,可轮回结局并不是他想要的,而他所轮回的世界也只不过是罪决神使的一场戏,但他一直不知道,罪决神使......
0.6万字1个月前
Song妙妙屋 连载中
Song妙妙屋
Song_宋眠
(求求看看孩子吧)图源网络,望喜❤️只要收藏此书就可以投稿哦
1.7万字4周前
菲洛道林的恋爱 连载中
菲洛道林的恋爱
洛林cp绝对甜
讲述了菲洛和道林的恋爱
2.7万字4周前
冰帝之无限穿越 连载中
冰帝之无限穿越
冰梦兰
『五维虚空』绝对静止,你我皆璀璨『已签约‎|•'-'•)و✧』自己看(作者是初中生,写不好请见谅)未经允许,禁止摘抄!自己写的,可能会有点乱......
3.8万字4周前
妖精老公要拐我 连载中
妖精老公要拐我
小梁子
跑哪里去?先生,我们不认识没关系,交流交流就认识了一女n男糖分超高
13.2万字4周前