数学联邦政治世界观
超小超大

Maschke 定理 (5-4)

|G| h∈G

于是 g 是厄米特内积 * 下的酉变换;

现在定义

W:=U⊥={υ ∈ V|υ * u=0,∀u ∈ U},

为 U 关于厄米特内积 * 的正交补空间,则有线性空间的直和分解 V=U ⨁ W ;最后证明 W 是 G– 子模

任取 ω ∈ W , g ∈ G ,以及 u ∈ U ,利用 U 的 G– 不变性我们有 (gω) * u=ω * (g⁻¹u)=0,因此 gω ∈ w ,这就证明了 W 的 G– 不变性

推论1.3.8 (复矩阵表示版本的 Maschke 定理)设 G 为有限群, X 是 G 的一个 d 维复矩阵表示,则存在一个固定的可逆矩阵 T ,使得对每个 g ∈ G ,有

Ⅹ⁽¹⁾(g)

TX(g)T⁻¹=( · · · ),

X⁽ᵏ⁾(g)

其中每个 X⁽ⁱ⁾ 均是 G 的不可约复矩阵表示

Pf.设 V=ℂᵈ 是对应于 X 的 G– 模,则对每个 g∈G 和 υ ∈ V 有 gυ=X(g)υ,上式右边为矩阵的乘法;根据 Maschke 定理,有分解 V=W⁽¹⁾ ⨁ · · · ⨁ W⁽ᵏ⁾,其中每个 W⁽ⁱ⁾ 均为不可约的 G– 子模,并且 dim W⁽ⁱ⁾=dᵢ ;

分别取 W⁽¹⁾,· · ·,W⁽ᵏ⁾ 的有序基 β₁,· · ·,βₖ ,按顺序合成 V 的有序基 β ,则对每个 g∈G , X(g) 在基 β 下的矩阵表示形如

X⁽¹⁾(g)

TX(g)T⁻¹=( · · · ),

X⁽ᵏ⁾(g)

其中 X⁽ⁱ⁾ 是 X 限制在 W⁽ⁱ⁾ 上得到的子表示,所以是不可约的

最后作为例子我们分解置换群S₃ 的典型表示

设V=ℂ{1,2,3} 是与典型表示等同的 S₃– 模,我们知道 ℂ{1+2+3} 是 V 的一个一维 S₃– 子模;定义 V 上的厄米特内积 (·,·):V × V → ℂ 为 (υ,ω):=αˉx+bˉy+cˉz,其中 υ=α · 1+b · 2+c · 3 , ω=x · 1+y · 2+z · 3 ;可以验证,对任一 σ ∈ S₃ ,有 (συ,σω)=(υ,ω) ,即厄米特内积 (·,·) 是 S₃– 不变的;

于是我们很容易计算出ℂ{1+2+3} 的正交补空间 ℂ{1+2+3}⊥ 为 ℂ{1+2+3}⊥={α · 1+b · 2+c · 3|α+b+c=0}

可以验证ℂ{1+2+3}⊥ 不存在一维的 S₃– 子模,故为不可约的;

取ℂ{1+2+3} 的基 1+2+3 以及 ℂ{1+2+3}⊥ 的基 2 – 1 , 3 – 1 ,则 X 在 V 的有序基 1+2+3 , 2 – 1 , 3 – 1 下的矩阵表示为

1 1

X(id)=( 1 0),X(12)=( –1 –1 ),

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

红月:死寂 连载中
红月:死寂
深渊教团神魔教主梦
悲惨之人的旅途。(本人涉及多个圈,所以可能会有其他圈人物,开学中之后每周一更)
5.7万字9个月前
惊悚游戏,亦正亦邪双生子 连载中
惊悚游戏,亦正亦邪双生子
鸘s
0.4万字8个月前
穿书:颜狗女配要修仙 连载中
穿书:颜狗女配要修仙
折千秋
【慎入】初见乍惊欢,久处亦怦然。——池婠♡君寒执——池婠是一个很挑剔的隐藏颜狗,雷劈穿书成了龙傲天男主的炮灰早死黑月光。然而,本以为走完剧情......
73.2万字8个月前
妖王收割记 连载中
妖王收割记
笔名三伶
#伦陷三部曲#之第一部/已完结/收入已捐赠给“乡村支教”公益项目/这是一部先收身,再收心,要爱就里里外外100%爱的故事。希望若干年后仍有人......
15.5万字8个月前
曦箫舞云剑 连载中
曦箫舞云剑
兰溪少
【已签约】震惊!男友满门抄斩,竟是闺蜜幕后操纵?天上下纵横无敌的一代大能琉璃大至仙突然暴毙,东陵帝国皇室坛家满门被斩,大陆表面风平浪静,实则......
16.4万字8个月前
异世界也是本尊的 连载中
异世界也是本尊的
冰柠酱
被奇怪的力量带到异世还被封为圣女青龙?白虎?玄武?朱雀?分分求收留?我才不要,我有小白就够了丹药?武器?秘境?我会缺这些?“苍天呀!可以给我......
6.1万字8个月前