|G| h∈G
于是 g 是厄米特内积 * 下的酉变换;
现在定义
W:=U⊥={υ ∈ V|υ * u=0,∀u ∈ U},
为 U 关于厄米特内积 * 的正交补空间,则有线性空间的直和分解 V=U ⨁ W ;最后证明 W 是 G– 子模
任取 ω ∈ W , g ∈ G ,以及 u ∈ U ,利用 U 的 G– 不变性我们有 (gω) * u=ω * (g⁻¹u)=0,因此 gω ∈ w ,这就证明了 W 的 G– 不变性
推论1.3.8 (复矩阵表示版本的 Maschke 定理)设 G 为有限群, X 是 G 的一个 d 维复矩阵表示,则存在一个固定的可逆矩阵 T ,使得对每个 g ∈ G ,有
Ⅹ⁽¹⁾(g)
TX(g)T⁻¹=( · · · ),
X⁽ᵏ⁾(g)
其中每个 X⁽ⁱ⁾ 均是 G 的不可约复矩阵表示
Pf.设 V=ℂᵈ 是对应于 X 的 G– 模,则对每个 g∈G 和 υ ∈ V 有 gυ=X(g)υ,上式右边为矩阵的乘法;根据 Maschke 定理,有分解 V=W⁽¹⁾ ⨁ · · · ⨁ W⁽ᵏ⁾,其中每个 W⁽ⁱ⁾ 均为不可约的 G– 子模,并且 dim W⁽ⁱ⁾=dᵢ ;
分别取 W⁽¹⁾,· · ·,W⁽ᵏ⁾ 的有序基 β₁,· · ·,βₖ ,按顺序合成 V 的有序基 β ,则对每个 g∈G , X(g) 在基 β 下的矩阵表示形如
X⁽¹⁾(g)
TX(g)T⁻¹=( · · · ),
X⁽ᵏ⁾(g)
其中 X⁽ⁱ⁾ 是 X 限制在 W⁽ⁱ⁾ 上得到的子表示,所以是不可约的
最后作为例子我们分解置换群S₃ 的典型表示
设V=ℂ{1,2,3} 是与典型表示等同的 S₃– 模,我们知道 ℂ{1+2+3} 是 V 的一个一维 S₃– 子模;定义 V 上的厄米特内积 (·,·):V × V → ℂ 为 (υ,ω):=αˉx+bˉy+cˉz,其中 υ=α · 1+b · 2+c · 3 , ω=x · 1+y · 2+z · 3 ;可以验证,对任一 σ ∈ S₃ ,有 (συ,σω)=(υ,ω) ,即厄米特内积 (·,·) 是 S₃– 不变的;
于是我们很容易计算出ℂ{1+2+3} 的正交补空间 ℂ{1+2+3}⊥ 为 ℂ{1+2+3}⊥={α · 1+b · 2+c · 3|α+b+c=0}
可以验证ℂ{1+2+3}⊥ 不存在一维的 S₃– 子模,故为不可约的;
取ℂ{1+2+3} 的基 1+2+3 以及 ℂ{1+2+3}⊥ 的基 2 – 1 , 3 – 1 ,则 X 在 V 的有序基 1+2+3 , 2 – 1 , 3 – 1 下的矩阵表示为
1 1
X(id)=( 1 0),X(12)=( –1 –1 ),
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。