明显地,密文c 泄露了 F(kᵢ,x),i=1,. . .,s 的比特长度。因此为了保证这个结构的安全性,我们必须假定空功能 F(ϵ,·) 已经泄露了这个信息,也就是说 |F(kᵢ,x)|,i=1,. . .,s 包含在了 F(ϵ,x) 内。我们说 F 泄露了功能的比特长度。
定理1:设 F 是一个泄露功能比特长度的函数。若 (G,E,D) 是语义安全的公钥加密方案,则实现功能 F 蛮力构造的函数方案是安全的。
证明(证明框架):证明方法是对挑战密文的s 个部分进行标准混合论证。
We briefly show that any functionality F where the key space K has polynomial size can be easily realized. Write s=|K| – 1 and K={ϵ,k₁,. . .,kₛ). In this brute force construction, the size of public parameters, secret key,and ciphertext are all propor- tional to s. A closely related construction is given in [BW07].
The brute force FE scheme realizing F uses a semantically secure public-key en-cryption scheme (G,E,D) and works as follows:
– setup(1λ):for i=1,. . .,s run (pp,mkᵢ) ← G(1λ).
output:pp:=(ppᵢ,. . .,ppₛ) and mk:=(mk₁,. . .,mkₛ)
– keygen(mk,kᵢ):output skᵢ:=mkᵢ.
– enc(pp,x):output c:=,=(F(ϵ,x),E(pp,F(kᵢ,x)),. . .,E(ppₛ,F(kₛ,x))).
– dec(skᵢ,c):output c₀ if skᵢ=ϵ,and output D(skᵢ,cᵢ) otherwise.
Clearly, a ciphertext c leaks the bit lengths of F(kᵢ,x) for i=1,. . .,s. Therefore,for this construction to be secure we must assume that this information is already leaked by the empty functionality F(ϵ,·),namely that |F(kᵢ, x)| for i=1,. . .,s is contained in F(ϵ,x). If so then we say that F'reveals functional bit lengths.
Theorem 1.Let F be α functionαlity thαt reνeαls functionαl bit lengths. If (G,E,D) is α semαnticαlly secure public-key encryption scheme then the brute force FE system implementing F is secure.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。