数学联邦政治世界观
超小超大

关于quantale (2-1)

一直对quantale理论,尤其是integral quantale颇感兴趣。

我了解到quantale这一类代数结构是在了解环的理想的乘法与加法时。当时我思考了一个问题:环的理想的行为(即在乘法与加法下的表现)会在何种程度上决定环本身的行为?

后来查到资料得知,环的所有(双边)理想的集合在乘法与加法构成了一个quantale,隧对这类结构产生了兴趣。

数学:格论:

Ouantale 理论是由 Mulvev 于1986年提出的”,其目的是为量子力学提供新的数学模型,已在环的理想、线性逻辑和理论计算机科学等领域中有着广泛的应用”。理想在代数结构的刻画中起着重要作用文献[5]将 Quantale 中序结构与代数结构相结合给出理想的新定义,进而得出了理想成为素理想的条件”利用模糊集和粗糙集,人们把序代数的理想推广至模糊理想和粗糙理想的情形,得到了若干重要结果(79)L-模糊集是模糊集的推广形式,文献[10]讨论了半环的 L-模糊理想的范畴的性质,文献[11]引入了 L-quan-tum空间。本文中,借助L-模糊集,在Quantale 中引入L-模糊理想的概念,将理想和模糊理想纳入到统一框架中。同时,讨论这些L-模糊理想的性质和等价刻画,以期促进 Quantale 理论更好地应用于理论计算机科学。

1 预备知识

为了方便起见,首先介绍Quantale、Quantale的理想和L-模糊集等概念,有关格论的知识,请参看文献[12]。

定义1[1]设Q是完备格,&是Q上的二元运算且满足:

(1)∀α,b.c∈Q,(α&b)&c=α&(b&c);

(2)∀α∈Q,|bᵢ|ᵢ∈ₗ ⊆ Q,α&(∨ᵢ∈ₗbᵢ)=∨ᵢ∈ₗ.(α&bᵢ),(∨ᵢ∈ₗbᵢ)&α=Vᵢ∈ₗ(bᵢ&α),则称(Q,&)是Quantale.

定义2[5] 设 l 是 Q 的非空子集,若

(1)∀α,b∈l,α∨b∈l;

(2)∀α∈l且b ≤ α,b∈l;

(3)∀α∈l,∀b∈Q,α&b,b&α∈l,则称 l 是 Q 的理想。进一步地,若 l ≠ Q,则称 l 是 Q 的真理想。

定义3[6] 设 l 是 Q 的理想,∀α,b∈Q,

(1)若 l ≠ Q 且当α&b∈l 时,α ∈ l 或b∈l,则称l 是 Q 的素理想;

(2)当α&α∈l时,α∈l,则称 l 是 Q 的半素理想;

(3)若 l ≠ Q,当 α&b∈l且 α ∉ l 时,存在正整数 n 使bⁿ∈l,则称 l 是 Q 的预理想。这里bⁿ=b&b&· · ·&b。

n个

定义4[5]设A ⊆ Q,称包含 A 的最小理想为由 A 生成的理想,记作〈A〉。特别地,当A=|α|时,将〈|α|〉简记为〈α〉。

设X是非空集合,(L,≤,0,1)是完备格,这里0和1分别表示 L 的最小元与最大元,则称映射f:X→L为X上的L-模糊集[13]。X上的全体L-模糊集之集记作.𝓢 ʟ(X)。∀f,g ∈𝓢 ʟ(Q),VxeQ,定义

(f∧g) (x)=f(x)∧g(x).

(f∨g) (x)=f(x)∨g(x),

(f&g) (x)=∨(f(y)∧g(z)),

y&z=x

f ⊆ g 当且仅当 f(x) ≤ g(x)。

设入λ∈L,定义xλ ∈ 𝓢 ʟ(Q)如下:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

定制书来了哈 连载中
定制书来了哈
天佑中华
定制书?你们想让我写啥?是男神阿猪,还是可爱帅气的喜喜?或者观影?虐文(特擅长)甜文(不大会)还是ABO?还是HE结局是什么人设?明星类型吸......
0.1万字9个月前
晶渊 连载中
晶渊
冰霜之间
生与死早已注定
0.3万字8个月前
薄荷小公女 连载中
薄荷小公女
无结尾的恋
孤独的少女被帝国大公收养。开始她的成长治愈罗曼史。孤儿院里的女孩薄荷,每天饱受着各种折磨艰难度日。某天大贵族埃克多尼亚大公突然到来,成为了薄......
2.1万字8个月前
朝朝倾目 连载中
朝朝倾目
苏大仙
【已签约‖禁抄袭】(欢脱文+反穿反+女强+甜中带虐)不可一世的大魔王穿越后,转身一变娇弱“大白兔”谈情说爱,虐爆渣渣,变身富豪,一个不落。大......
7.2万字8个月前
三生三世:童梦儿 连载中
三生三世:童梦儿
秦伊染_
童梦儿
3.2万字8个月前
蝶魄 连载中
蝶魄
秦受
神魔大战后,魔帝萧魅与魔后雪艳姬逍遥自在去了。后来,人间出现一个名动天下的神秘女子……她是陈雪月?她是雪月?她是萧雪月!她是公主,她是将军,......
21.4万字8个月前