An available state space model for modeling long sequences
Paper: Efficiently Modeling Long Sequences with Structured State Spaces
Motivation and current problem
• A central problem in sequence modeling is efficiently handling data that contains long-range dependencies (LRDs). 一般要求上万步(16k),现在能做到几千步就不错了。
• 用special matrix(HIPPO)武装起来的latent space model本来具有长时间记忆的能力,但在计算上不可行:O(N 2L) operations and O(N L) space。 尽管依据经典linear algebra的降维算法被提出了,但是在数值上不稳定:A的条件数比较大。
• 希望有一个general-purpose sequence model: 现在的model总是针对一个particular domain(images, audio,text, time-series),处理一个narrow range of problems ( efficient training,fast generation, handling irregularly sampled data).这种现状的原因是这些模型想要高效,就需要domain-specific preprocessing,inductive biases, and architectures.
Contribution
1. S4解决了SSM模型过往的computational neck;在speed和memory overhead 上都达到了efficient transformer的水平;
2. 在LRD任务上成为SOTA,特别地,第一次解决了长达16k,涉及到图像空间推理的Path-X问题;
3. 除了LRD任务,S4具备成为general-purpose sequence model的潜力:
具有efficient training, fast generation, handling irregularly sampled data(比如说调整speech的采样频率)的多种功能
在不调整结构的情况下,能handle diverse domains:surpasses Speech CNNs on speech classification, outperforms the specialized Informer model on time-series forecasting problems, and matches a 2-D ResNet on sequential CIFAR with over 90% accuracy.
Preliminary
1.SSM Model
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。