数学联邦政治世界观
超小超大

罗素悖论的提出对【数学界的影响】 (5-1)

罗素悖论在数学史上是一个极其鲜明的转折点,应该说它的提出其重要性丝毫不亚于无理数、虚数、以及非欧几何的发现。它的出现,是所谓的“数学基础危机(crisis of fundamentals of mathematics)”的导火索。也有人(一般在中文科普圈子里)把它与无理数的发现、无穷小的问题、并称,叫做作“第三次数学危机”。

罗素悖论,顾名思义,是数学家和哲学家罗素最先提出的,是朴素集合论中的一个著名悖论。在朴素集合论里,我们可以用枚举的方式定义一个集合,比如说:

集合1={1,2,3}

说的是由1、2、3三个自然数组成的集合

但是在绝大多数情况下,用枚举的方式来定义集合显然是不现实的,比如说,所有的自然数构成一个自然数集,我们显然不可能把自然数一一枚举出来。所以,朴素的集合论中有一个公理,叫做“无限制概括公理”,说的是:

对于任何一个性质,满足该性质的所有元素,构成一个集合。

这样一来,我们就可以用一个性质来定义一个集合。这个公理看起来相当正确且无害,但是麻烦就是从这里来的。

如果我们问,一个集合的元素可以包括它自己吗?以这个公理来看,这个问题的答案是肯定的。比如说,所有“包含无穷多个元素的集合”的集合,它显然包含了无穷多个元素,那么它就包含了它自身。

那么我们可以这样来定义一种集合:

所有“元素不包括自己的集合”的集合。

我们把这个集合叫做A,那么,A的元素包括它自己吗?假设A不包括它自己,那么,A就满足“元素不包括自己的集合”这个性质,所以它就必然包括它自己,这是个矛盾;如果我们假设A包括它自己呢?那么根据A的性质,它必然不包括它自己,也是个矛盾。

这个悖论有一个更加通俗的版本,叫做“理发师悖论”,这个悖论是这样的:

小城里的理发师放出豪言:他只为,而且一定要为,城里所有不为自己刮胡子的人刮胡子。但问题是:理发师该为自己刮胡子吗?如果他为自己刮胡子,那么按照他的豪言“只为城里所有不为自己刮胡子的人刮胡子”他不应该为自己刮胡子;但如果他不为自己刮胡子,同样按照他的豪言“一定要为城里所有不为自己刮胡子的人刮胡子”他又应该为自己刮胡子。

那么,这个悖论是在何种背景下产生的、又为何是重要的呢?

集合论是整个数学学科的逻辑基础。现代数学,几乎全部都是建立在集合论基础上的。在19世纪之前,人们为数学的理论基础问题在黑暗中摸索,但是进展缓慢。这些问题主要包括:

1、 数学的抽象实在性:很显然,数学命题都是有真假的 - 它要么是真的,要么是假的。但是数学对象很显然又是一些抽象对象。例如说自然数、函数、几何点线面,它们不是一种具体的、存在于时空之中的、我们可以观察和实证的实体。那么它们的真假性来自何处?

2、数学的客观性:对于同一个数学命题,它的真假并不依赖于某种特定的主体。1+1=2,不论何人、何时、何地,对它的判断都不会有所不同。甚至说,即使没有人类,这个命题仍然成立吗?这个问题早期的数学家是坚信无疑的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

梦径1 连载中
梦径1
拾二twelve
我叫陌言,对于之前的记忆我没有任何印象。在2086年,世界被一片未知的“恐惧”笼罩,世界近乎全部的人陷入了沉睡。我就是那些例外。因此世界上诞......
0.5万字1年前
极航:盛夏 连载中
极航:盛夏
famy
20朵花花加更一章,10个金币加更一章,20个评论加更一章,开通一个会员加更一章,10个收藏加更一章
0.8万字1年前
Godanddevil 连载中
Godanddevil
巳非知
关于oc的…
1.1万字1年前
鬼王的医妃 连载中
鬼王的医妃
花玲珑
世人皆笑将军府三小姐丑陋无比,天生痴傻。可是谁又知道她慕云浅不在是以前的慕云浅而是来自二十一世纪的中医世家的传人。当她风华绝代,绝世无双。可......
30.8万字1年前
我家娘子太妖孽 连载中
我家娘子太妖孽
红捻子
她不过是旧疾发作掉落凡间,躺在树上喝酒,竟然看到一群人欺负几个人,于心不忍,出手相救,万万没想到被人给缠上。
29.1万字1年前
古风师徒日常 连载中
古风师徒日常
猫咪没有了魚儿
只是师徒日常二三事,徒儿淘气,师父严厉。喜欢的小伙伴进来,不喜欢的小伙伴请静静离开。
0.2万字1年前