数学公理出自不完全归纳法.
例如,Peano公理就出自对有限个自然数的归纳,即从1+1=2∧2+1=3∧3+1=4等有限个例归纳出任意自然数n的后继为n'=n+1. 再如,等量代换公理也出自对有限个等量关系的归纳,即从0.5=½∧cos⅓π=½→cos⅓π=0.5等有限个例归纳出∀a, b, c(a=c∧b=c→a=b). 再如,外延公理也出自对有限个具体集合的归纳,即从形如{x, y, z}={x, z, y}={z, y, x}={y, z, x}的个例归纳出S₁=S₂↔S₁∩S₂=S₁∧S₁∩S₂=S₂. 一般地,任意数学公理都是不完全归纳法的推理结论,即
A(x)→R(x)
式中A为表征变元是一条公理的谓词,R为表征变元是一个不完全归纳法的谓词.
不完全归纳法本身就是一种证明方式,因而,严格地说,我们不能说数学公理无法被证明,只能说数学公理不能在某一论域内以完全归纳法证明或不能在某一论域内以演绎法证明,除非将论域推广(例如,只要将论域从自然数集N推广至整数集Z,即可证明Peano公理,从而使该公理转换为定理). 数学的严谨性,由其公理系统的无例外记录和基于该公理系统的形式演绎推理提供保证. 惟其如此,数学公理的可信度也由该公理的无例外记录提供保证,这与“烧红的烙铁都烫手”由无例外记录提供保证具有相同的逻辑原理.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。