数学联邦政治世界观
超小超大

Peano 自然数公理体系 (2-1)

本文我们介绍一下 Peano 的自然数公理体系来对自然数0,1,2,. . . 从逻辑上给出严格的定义 .

定义:设N 是一非空集合 , 且有

(i) 在N 内存在一个特定元素 0 ;

(ii) 存在N 到自身的一个映射 , 记作 n ↦ n⁺ , 称为后继映射 , 且满足 ∀n∈N ,有 n⁺ ≠ 0 和 n ↦ n⁺ 是一个单射 , 而 N 的一个子集 T 满足归纳公理 , 即如果具备下面的条件:

(a)0∈T;

(b) 若0∈T,则 n⁺ ∈T ,进而有 T=N ;

此时称N 是一个自然数系 , N 内的元素 n 称为自然数 .

从自然数系定义中的归纳公理出发 , 就立马可以得到下面的第一归纳原理 .

定理(第一归纳原理): 如果每个自然数n 都对应于某个命题 E(n) , 如果命题 E(0) 和 E(n) 成立 , 则命题 E(n⁺) 成立 , 故可以断言命题 E(n) 对一切自然数 n 均成立 .

上面的第一归纳原理就是我们中学中常用的数学归纳法的理论来源 , 接下来我们再从N 的定义出发 , 在 N 内定义加法和乘法 , 于是我们先来证明下面的递归原理 .

定理(递归原理):令S 是一个集合 , φ 是 S 到自身的一个映射 , α 是 S 的一个固定元素 , 则存在 N 到 S 的唯一的映射 f 满足

(i)f(0)=α;

(ii)f(n⁺)=φ(f(n)) .

证明:考察集合A={(n,s):n∈n,s∈S} , 设 Γ 是具有下面性质的 A 的子集 ∪ 构成的集合 , 即 ∪ 满足 (0,α)∈∪ 和若 (n,b)∈∪ , 则 (n⁺,φ(b))∈∪ . 显然 A∈Γ , 故 Γ ≠ ∅ , 再令 F 是 Γ 内所有集合的交集 , 故有 (0,α)∈F , 进而得到 F ≠ ∅ , 下面证明 F 的两条基本性质 .

(i)∀n∈N , ∃b∈S 使得 (n,b)∈F . 证法如下:令 T={n∈N: b∈S, (n,b)∈F} , 且由于 0∈T , 若 n∈T , 即存在 b∈S 使得 (n,b)∈F , 则 (n,b) 属于 Γ 的任意元素 ∪ , 故 (n⁺,φ(b)) 属于 Γ 的所有元素 ∪ , 即 (n⁺,φ(b))∈F , 于是有 n⁺∈T , 根据归纳公理可知 , 得到 T=N .

(ii) 若(n,b)∈T 和 (n,b')∈S , 则有 b=b' . 证法如下:令

T={n∈N: (n,b)∈F (n,b')∈F, b=b'} , 由于 (0,α)∈F , 若 (0,α')∈F 和 α ≠ α' , 故从 F 中去掉 (0,α') 后得到 A 的子集 F' , 显然有 F'∈Γ , 故 F ⊆ F' , 此时与 F' 是 F 的真子集矛盾 , 故有 α=α' , 即有 0∈T , 然后只需证明若 n∈T , 则 n⁺∈T 即可 , 假设 n⁺ ∉T , 于是取 (n,b)∈F , 此时 (n⁺,φ(b))∈F , 且有 c ≠ φ(b) 使得 (n⁺,c)∈F , 则从 F 中去掉 (n⁺,c) 得到子集 F' , 显然有 F'∈Γ , 故 F ⊆ F' , 推出与 F' 是 F 的真子集矛盾 , 因此根据归纳公理可知 , 有 T=N .

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

十二星座:使命传承 连载中
十二星座:使命传承
音洛漓梦
『浮海文社』纤云弄巧,星海涟漪澜明大陆,这是一个神奇的世界。这个世界有三种人:魔法师,普通人,堕魔者。若在15岁时发现了魔法天赋,即为魔法师......
4.2万字4周前
选之无晴 连载中
选之无晴
雯彤
请勿抄袭
13.7万字4周前
宇宙中的那颗星—仙女座中的公主 连载中
宇宙中的那颗星—仙女座中的公主
99091512
本作品瞎编,作者幻想联编,不属实,夸张,如有不适,不要看
9.2万字4周前
快穿:反派大佬的极致占有 连载中
快穿:反派大佬的极致占有
有亿点like
·软萌甜包傲娇腹黑·1V1双洁双男主原创勿袭挚友命陨,沈知心如死灰。几万年过去,他终于迎来了自己的死期。意外之中,绑定了系统。得知还能见到挚......
7.7万字4周前
世子今天犯病了吗 连载中
世子今天犯病了吗
蟾宫桂
今穿古×古穿今故事的最开始,顾念霖的母亲往家里领了一个孩子,顾念霖没想到,那个人会是沈砚。顾念霖更没想到,沈砚到来以后,她的梦都稀奇古怪起来......
9.1万字4周前
图渊 连载中
图渊
万俟姑娘
“图渊,你真好看!”“嗯。”“嘿嘿,图渊,介意娶个媳妇不?”“嗯?”……曾经,洛葵的死党放下手上的书,神秘兮兮的问她:“你相信这个世界上有龙......
10.3万字4周前