数学联邦政治世界观
超小超大

指标定理(三) (10-3)

Elements in Kcₚₜ(X) are represented by formal difference of vector bundles trivialized outside a compact set. By definition Kcₚₜ(E) =ˉK(Th(E)). By the discussion above,Kˉ*cₚₜ (E)is a Kˉ*cₚₜ(M)-module.

We say that a class u ∈ Kcₚₜ(E) is a K-theory orientation of E if Kˉ*cₚₜ(E) is a free Kˉ*cₚₜ(M)-module with generator u.A class u ∈ Kcₚₜ(E) is said to have the Bott periodicity property if u determines a K-theory orientation in any local trivialization of E over a closed subset C ⊂ M.

One can verify that,as the trivial case above,d(π*(∧*(E))) has the Bott periodicity property.

We claim that if the base space is compact and u ∈ Kcₚₜ(E)has the Bott periodicity property,then u ∈ Kcₚₜ(E) is a K-theory orientation of E.Pick a covering of M by finitely many closed subsets such that E is trivial when restricted to any of them. For the theory Kˉ*cₚₜ,there exists Mayer-Vietories sequence as well. ∪sing Mayer-Vietories sequence and five lemma, we construct the desired isomorphism for A∪B from the known isomorphisms for A,B,A∩B. Using induction,the proof is completed.

In particular,the mapping

ψ:K(M)=Kcₚₜ (M) → K (E,E₀)=ˉK(Th(E))=Kcₚₜ(E),

α ↦ π*α · d(π*(∧*(E)))

is an isomorphism.

2 Atiyah-Singer Index Theorem

2.1 Analytical index

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

知否知否应是绿肥红瘦! 连载中
知否知否应是绿肥红瘦!
万事不值得
已签约,知否改写
17.2万字4周前
开心超人之邪月组织 连载中
开心超人之邪月组织
落曦瑶海
“当年是你们把我们赶出来的!现在,你们要受到应有的惩罚”
2.2万字4周前
无殇之忘忧 连载中
无殇之忘忧
清幽紫宣
[已签约]原创不易,请勿抄袭小凤凰洛竹筠儿时随师尊出去历练时,救了一个男孩,二十年后,她碰到了一个男孩,谁知就是当年她救的那个男孩,还隐了真......
29.9万字4周前
笑看浮生多纷扰 连载中
笑看浮生多纷扰
肉松蛋糕
在仙门相遇,他对她动了心;她的族人被灭,立志复仇,下凡历劫,他到凡间去找她;15岁时,她记忆即将恢复;将会发生什么呢?
9.6万字4周前
冥界少主,请走开! 连载中
冥界少主,请走开!
跳跳糖nice
渣男、花心、大骗子!最好有多远滚多远……  这个是羽落对某负心汉的评价。  而某负心汉则不以为然,知道自己罪孽深重,伤她伤得太深,所以誓要以......
10.5万字4周前
梦回万古之无泪非无情 连载中
梦回万古之无泪非无情
楠溪衍
【月寒文社】明月之身高挂幽冷寒映人间(本书已签约,勿抄袭,勿转载,违者一律追究法律责任)九万年前,她错信了人,痴心换来一场灭世浩劫,那一战,......
11.5万字4周前