数学联邦政治世界观
超小超大

指标定理(三) (10-3)

Elements in Kcₚₜ(X) are represented by formal difference of vector bundles trivialized outside a compact set. By definition Kcₚₜ(E) =ˉK(Th(E)). By the discussion above,Kˉ*cₚₜ (E)is a Kˉ*cₚₜ(M)-module.

We say that a class u ∈ Kcₚₜ(E) is a K-theory orientation of E if Kˉ*cₚₜ(E) is a free Kˉ*cₚₜ(M)-module with generator u.A class u ∈ Kcₚₜ(E) is said to have the Bott periodicity property if u determines a K-theory orientation in any local trivialization of E over a closed subset C ⊂ M.

One can verify that,as the trivial case above,d(π*(∧*(E))) has the Bott periodicity property.

We claim that if the base space is compact and u ∈ Kcₚₜ(E)has the Bott periodicity property,then u ∈ Kcₚₜ(E) is a K-theory orientation of E.Pick a covering of M by finitely many closed subsets such that E is trivial when restricted to any of them. For the theory Kˉ*cₚₜ,there exists Mayer-Vietories sequence as well. ∪sing Mayer-Vietories sequence and five lemma, we construct the desired isomorphism for A∪B from the known isomorphisms for A,B,A∩B. Using induction,the proof is completed.

In particular,the mapping

ψ:K(M)=Kcₚₜ (M) → K (E,E₀)=ˉK(Th(E))=Kcₚₜ(E),

α ↦ π*α · d(π*(∧*(E)))

is an isomorphism.

2 Atiyah-Singer Index Theorem

2.1 Analytical index

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

是你路过了我的倾城时光 连载中
是你路过了我的倾城时光
a冰冷
短篇小说,已完结
0.4万字9个月前
冬失忆W 连载中
冬失忆W
冬玖辞
已完结,文笔很烂,不喜勿喷【剧情含有夸张情节,纯属个人想象,误上升角色】
2.5万字8个月前
向光明开 连载中
向光明开
寻觅_484792758
黑云压城城欲摧,甲光向日金鳞开。无边的黑暗,也会被光明驱散,人的一生,始终向着光明走,没有什么是可惧怕的。
0.1万字8个月前
穿越之膜拜吧,我的臣民们 连载中
穿越之膜拜吧,我的臣民们
珈梦
一朝穿越,她成为了栖梧大陆南楚国宰相府的千金大小姐凰九鸢,这样一个与前世截然不同的身份,让她感受到了前所未有的来自于亲人的温暖……(有些无语......
2.2万字8个月前
星辰遇你 连载中
星辰遇你
慕星辰291
在一片神秘的大陆上,生活着一些不一样的人,他们用梦魇争斗比赛,在这里,每个人都有自己的梦魇,慕星辰在这里遇到了他,那个奇奇怪怪的人,天之娇女......
22.4万字8个月前
我愿掉进你的陷阱 连载中
我愿掉进你的陷阱
俭溪
主人公:玉珏、尹千伊简介:她为复仇,他为她的心脏,偶然中的必然将他们牵连在一起,是她成功诱敌深入,还是他主动“送货上门”,最终对他们来说都不......
13.3万字8个月前