A Brief lntroduction to lndex Theorems 指标定理
本文简要介绍的是Atiyah-Singer 指标定理及其特殊情况Hirzebruch符号差定理以及Riemann-Roch定理。粗略地说,Atiyah-Singer 指标定理陈述的是对于流形上的一类算子,通过解析的方式以及通过拓扑的方式分别得到的两种指标相等。
文中第一节是一些预备知识,包括向量丛、示性类与K理论等,如有需要可以看看或者直接跳过。第二节讲两种指标的定义、定理的叙述以及简要概括了定理证明(不是用热核那个方法)。后面是Atiyah-Singer 指标定理的特例与应用,包括de Rham复形与Dolbeault复形、Hirzebruch符号差定理以及Riemann-Roch定理的概述。
注意:文章划分(1/5)章节!
1
A Brief Introduction to Index Theorems
Lan Qing
August 26, 2020
Abstract
The Atiyah-Singer index theorem states that for an elliptic operator on a com-
pact manifold, the analytical index is equal to the topological index. In this note we give a brief introduction to the Atiyah-Singer index theorem. As applications we interpret the Hirzebruch signature theorem and the Riemann-Roch theorem as special cases of the Atiyah-Singer index theorem.
Contents
1 Introduction and Preliminaries
1.1 Introduction...................................2
1.2 Fibre bundles and vector bundles.......................2
1.3 Grassmann manifolds..............................3
1.4 Principal bundles and classifying space....................5
1.5 Characteristic classes..............................
1.6 K-theory..................................... 8
1.7 Thom isomorphism in K-theory........................ 10
2 Atiyah-Singer Index Theorem 12
2.1 Analytical index.................................12
2.2 Topological index................................13
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。