数学联邦政治世界观
超小超大

指标定理(一) (11-2)

2.3 Statement of the theorem and idea of the proof............... 14

3 Examples: de Rham Complex and Dolbeault Complex 15

3.1 de Rham complex................................ 15

3.2 Dolbeault complex............................... 17

4 Hirzebruch Signature Theorem 19

4.1 Multiplicative sequence............................. 19

4.2 Hirzebruch signature theorem......................... 19

5 Riemann-Roch Theorem 22

5.1 Divisors on Riemann surfaces......................... 22

5.2 Divisors and line bundles............................23

5.3 Hirzebruch-Riemann-Roch theorem...................... 24

6 Further Developments 25

2

1 Introduction and Preliminaries

1.1 Introduction

The main question in index theory is to provide index formulas for classes of Fredholm operators. Index theory has become a subject on its own only after M.F.Atiyah and I. Singer published their index theorems in a sequence of papers. Among them, Hirzebruch's signature theorem occupies a special place.Hirzebruch's theorem was generalized by A. Grothendieck, who introduced many of the ideas that proved to be fundamental for the proof of the index theorems. All these theorems turned out to be consequences of the Atiyah-Singer index theorems. ¹

In this review we give a brief introduction to some index theorems, Readers who are familiar with materials in this section can skip to the next section.

1.2 Fibre bundles and vector bundles

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

碎—— 连载中
碎——
游客1581297335189
故去的笛,燃及了梦里的野草
3.4万字11个月前
修仙1袭之旅 连载中
修仙1袭之旅
染尘_667805112
顶级修仙世家蓝家长房长女,惨死在其堂妹蓝茵凝手中,死前才知道蓝家没落更是因为她蓝茵凝,联合外人对付蓝家,重活一世,她一定要保住蓝家,要蓝茵凝......
11.0万字11个月前
新书是:无日不欢 连载中
新书是:无日不欢
小顾不乖
新书《无日不欢》
0.3万字11个月前
繁华落尽不负韶华 连载中
繁华落尽不负韶华
时光不是时光
一个被驱逐的女扮男装的小公子,一个叛逆出逃的任性公主,二人江湖相遇一路跌跌撞撞,会擦出怎样的火花?
14.7万字11个月前
末世之心上有你 连载中
末世之心上有你
温柔本身
当未知一步步靠近,生存还是死亡?当危险逐步靠近,胆怯,失望,无助……房屋中压迫着杂声,走廊上行走的行尸。人心变得微妙,无措,选择?究竟什么才......
18.2万字11个月前
重生之废材女主她又可以了 连载中
重生之废材女主她又可以了
顾余辞Guyuci
不定期重写
14.9万字11个月前