数学联邦政治世界观
超小超大

指标定理(二) (10-9)

a. Setting W₁ ≡ ρ*(V₁) we have [W]– [W₁] ∈ ker(i*). Hence,there is a unique ele-ment χ([V₀,V₁,σ]) ∈ K(X,Y) with j*φ⁻¹χ([V₀,V₁,σ])=[W] – [W₁]. This defines the homomorphism χ:L(X,Y) → K(X,Y). ▢

In the discussion above,we are requiring that spaces are compact and CW. But this is not true even for (T*M,T*M₀),where M is a compact manifold and T*M₀;= T*M–zero section. But if we fix a Riemannian metric on T*M and consider bundles D*M,S*M ⊂ T*M with fiber unit solid balls and unit spheres, (D*M,S*M) becomes a CW-pair homotopy equivalent to (T*M,T*M₀). Th(T*M):= D*M/S*M is called the Thom spαce of that bundle.

1.7 Thom isomorphism in K-theory

Recall the Thom isomorphism theorem, stating that for an oriented real rank n bundle π:E → B,there exists a unique class u ∈ Hⁿ (E,E₀;ℤ) such that for all k,we have the Thom isomorphism ф:Hᵏ (B;ℤ) → Hⁿ⁺ᵏ (E,E₀;ℤ),x ↦(π*x)∪u.

There is a similar version in K-theory.

Theorem 9 For α compler υector bundle π:E → M oυer α compαct spαce M,ωe hαυe αn isomorphism

ψ:K(M) → K(E,E₀),α ↦ π*α · d(π*(∧*(E))).

Firstly,we explain the element d(π*(∧*(E))) ∈ K(E,E₀). Consider mappings between vector bundles over E,

фᵢ:π*(∧ⁱE) → π*(∧ⁱ⁺¹E),(ω,υ) ∈ π*(∧ⁱE) ↦ (ω,ω∧υ)

where ω ∈ E. When restricted to E₀, these mappings form an exact sequence,as is easily verified. We claim that these mappings determine a unique element d(π*(∧*(E))) ∈ K(E,E₀).

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

腹黑魔帝赖上门 连载中
腹黑魔帝赖上门
龙小悦
他,魔界魔帝,妖孽俊美,残酷霸道,却唯独对她极尽宠爱。她,神界神凰,生于混沌,高贵淡漠,却爱上了身为魔帝的他。神魔之爱,不容于世,一朝事露,......
75.1万字6个月前
时空大殿 连载中
时空大殿
Happy的迷之自信
光鲜亮丽的背后,怎么不会是最悲惨的人生呢?(把怪大和查九融合到一起了还几个自设任务和我的闺蜜)
0.2万字6个月前
猪菲的恋情 连载中
猪菲的恋情
想零
猪猪侠菲菲的竞球故事
5.5万字6个月前
王秋儿和王冬儿穿越凤逆天下 连载中
王秋儿和王冬儿穿越凤逆天下
泪无翼
弃坑慎入
5.1万字6个月前
前世今生梨花惹人醉 连载中
前世今生梨花惹人醉
时光不老岁月静好
第一部分结局。(1~30章打怪,31章后言情)第一次写,玄幻仙侠小说,文笔不好,请多见谅。问世间情为何物,不过是一物降一物。阑梦与秦淮上一辈......
8.4万字6个月前
攻略男主我最行 连载中
攻略男主我最行
池尘
这个系统有点撩啊~
6.6万字6个月前