数学联邦政治世界观
超小超大

指标定理(二) (10-9)

a. Setting W₁ ≡ ρ*(V₁) we have [W]– [W₁] ∈ ker(i*). Hence,there is a unique ele-ment χ([V₀,V₁,σ]) ∈ K(X,Y) with j*φ⁻¹χ([V₀,V₁,σ])=[W] – [W₁]. This defines the homomorphism χ:L(X,Y) → K(X,Y). ▢

In the discussion above,we are requiring that spaces are compact and CW. But this is not true even for (T*M,T*M₀),where M is a compact manifold and T*M₀;= T*M–zero section. But if we fix a Riemannian metric on T*M and consider bundles D*M,S*M ⊂ T*M with fiber unit solid balls and unit spheres, (D*M,S*M) becomes a CW-pair homotopy equivalent to (T*M,T*M₀). Th(T*M):= D*M/S*M is called the Thom spαce of that bundle.

1.7 Thom isomorphism in K-theory

Recall the Thom isomorphism theorem, stating that for an oriented real rank n bundle π:E → B,there exists a unique class u ∈ Hⁿ (E,E₀;ℤ) such that for all k,we have the Thom isomorphism ф:Hᵏ (B;ℤ) → Hⁿ⁺ᵏ (E,E₀;ℤ),x ↦(π*x)∪u.

There is a similar version in K-theory.

Theorem 9 For α compler υector bundle π:E → M oυer α compαct spαce M,ωe hαυe αn isomorphism

ψ:K(M) → K(E,E₀),α ↦ π*α · d(π*(∧*(E))).

Firstly,we explain the element d(π*(∧*(E))) ∈ K(E,E₀). Consider mappings between vector bundles over E,

фᵢ:π*(∧ⁱE) → π*(∧ⁱ⁺¹E),(ω,υ) ∈ π*(∧ⁱE) ↦ (ω,ω∧υ)

where ω ∈ E. When restricted to E₀, these mappings form an exact sequence,as is easily verified. We claim that these mappings determine a unique element d(π*(∧*(E))) ∈ K(E,E₀).

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

雨幕山林绘 连载中
雨幕山林绘
崖鹤掌中饱饱
陈崖鹤和季怀安的爱情故事
3.5万字4周前
我有一个团宠队长 连载中
我有一个团宠队长
林念棉
团宠巴克队长
0.1万字4周前
天心恋之我可以依靠你吗? 连载中
天心恋之我可以依靠你吗?
夏梦凡心
注意提示一下:这个与原版的神兵小将没有关系
4.9万字4周前
雷狮X安迷修:抑幻药 连载中
雷狮X安迷修:抑幻药
九十四天
——来到魂灵国度哪有相识的恋情。不过是无尽的等待与挂念。都说爱人的眼里有第八大洋,可如果我的爱人看不见我呢?
0.9万字4周前
帝座∶躺着不香吗? 连载中
帝座∶躺着不香吗?
我家崽我宠
汐落天从来不知道有人可以这么不要脸的去追求一个人,可以这么没下线的去引起一个人的注意,可以卑微到地底里,只是为了能让那个人能看他一眼。可惜了......
13.1万字4周前
那一地的碎玻璃 连载中
那一地的碎玻璃
陈远陌
【已完结2021.9.5签约】许江遥:你总是喜欢把我对你的所有爱与信任耗光……蒋泽渊:从不曾停止对你的爱,却被命运左右为难……蒋泽渊:我带着......
8.2万字4周前