数学联邦政治世界观
超小超大

指标定理(二) (10-5)

(–1)ⁱc₂ᵢ(ξ ⨂ ℂ)∈ H⁴ⁱ(B;ℤ). Indeed,H*(BOₙ;ℚ) is the polynomial ring generated by the universal Pontrjagin classes p₁,. . .,pₘ where m=[n/2]. We sketch a proof. Let T ⊂ Oₙ be the maximal torus in Oₙ. ℝⁿ decomposes into 2-dimensional subspaces Uⱼ,j=1,. . .,m (and possibly one additional 1-dimensional subspace). After complexifying,each Uⱼ ⨂ ℂ decomposes into Vⱼ ⨁ ˉVⱼ . The total Chern class of the complexified bundle is ∏ⱼ(1–x²ⱼ),so the total Pontrjagin class is p=∏ⱼ(1+x²ⱼ),i.e.

ρ*:H*(BOₙ:ℚ) → H*(BT;ℚ),p↦∏(1+x²ⱼ).

8

It follows that H*(BOₙ:ℚ) is the subalgebra of symmetric polynomials of x²₁,. . .,x²ₘ, which gives the conclusion.

Similarly we can calculate H*(BSOₙ;ℚ), since the maximal torus in Oₙ is indeed in SOₙ. If n=2m+1 is odd,H*(BSOₙ;ℚ) is still the subalgebra of symmetric poly-nomials of x²₁,. . .,x²ₘ,i.e. the polynomial ring generated by the universal Pontrjagin classes p₁,. . .,Pₘ. But if n=2m is even,H*(BSOₙ:ℚ) is the subalgebra of symmetric polynomials generated by x²₁,. . .,x²ₘ₋₁,x₁x₂. . .xₘ. Indeed

H*(BSO₂ₘ:ℚ)=ℚ[p₁,. . .pₘ₋₁,χ]

where χ is the Euler class defined for oriented real bundles.

Let HΠ(B;ℤ) denote the collection of formal power series. Consider the expression

∑ eᵗⁱ ∈ HΠ(BTⁿ;ℚ).

ᵢ₌₁

It’s symmetric so it belongs to HΠ(B∪ₙ;ℚ). We define its pullback in HΠ(B;ℚ) to be the Chern character of π:E → B,denoted by ch(E). Also the pullback of

tᵢ

∏ ─── ∈ HΠ(BUₙ;ℚ) ⊂ HΠ(BTⁿ;ℚ)

ᵢ 1 – e⁻ᵗⁱ

is defined to be the Todd clαss.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

久听书闻 连载中
久听书闻
衡且
乱七八糟双男主小灵感聚集地៷>ᴗ<៷-注:禁抄禁转高三断更是常态
0.4万字8个月前
拉澳:赌城双生子 连载中
拉澳:赌城双生子
温霖七柒
拉斯维加斯×澳门州省CP。
0.3万字8个月前
四维:无主之地 连载中
四维:无主之地
凌墨双
男孩卡迪和妹妹,妈妈相依为命。但是在11岁那年,妈妈前往四维世界调查时,突然失踪,他和妹妹一同前去寻找妈妈,却被告知妹妹不是人类。为了找到妈......
1.2万字8个月前
金凌:只对你一人倾心 连载中
金凌:只对你一人倾心
秋叶凌玖
有三对主cp的喜欢一个人,就是一个人。只喜欢他/她一个,因为一世一双人她南宫婷依,世家小姐排行第三,南宫世家的三小姐,医者仁心,桀骜不灭。他......
3.0万字8个月前
愿无殇雪 连载中
愿无殇雪
夜行摆渡
(已弃坑,勿点)
4.2万字8个月前
X龙时代(漫画式) 连载中
X龙时代(漫画式)
蓝离殇灬字蓝霜
没什么简介,漫画来的,爱看看不看。我是把这个做给那些不能看这个漫画的小朋友们的
0.0万字8个月前