数学联邦政治世界观
超小超大

指标定理(二) (10-2)

Proof. We may assume that E is trivial when restricted to each simplex. We use induction. The result is clear on 0-skeleton. Suppose now we have F|ᴇᵏ:Eᵏ=π⁻¹(Bᵏ) → EG. For a (k +1)-simplex σ of B,F|π⁻¹(∂σ) is determined by F|∂σ×e:∂σ × e → E. Since EG is homotopically trivial,F|∂σ×e can be extended to F|σ×e,and then to F|π⁻¹(σ) by G-equivariance. ▢

Such a bundle is called the universal G-bundle,and BG is called the classifying space of G.

Also,the map defined above is determined up to homotopy. Given two homomor-phisms F₀,F₁:E → EG,consider the bundle l × E → I × G. F₀,F₁ gives a map ∂l × E → EG,so we can extend the map to l × E → EG as above.

Write P(B,G) for the collection of (isomorphism classes of) principal G-bundles over B. By the discussion above we have a surjective mapping

P(B,G) → [B,BG].

Indeed it’s bijective,and this is why BG is called the classifying space. Bijectivity is proved using covering homotopy property.

If there is another universal G-bundle E'G → B'G,there are induced maps f:BG → B'G,g:B'G → BG such that fg,gf are homotopic to identity. Thus the classifying space,if exists,is determined up to homotopy equivalence. In particular,H*(BG;R) is completely determined.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

你是我的救赎也是我触碰不到的光! 连载中
你是我的救赎也是我触碰不到的光!
徐谢
你是我的神把我从地狱拉了出来可也是你将我推入了地狱!幻想是美好的可也是你触碰不到也摸不着!神啊如果你听到我的祈祷请你救救他我真的不失去我的爱......
1.0万字8个月前
我靠氪金系统在修真界搅风搅雨 连载中
我靠氪金系统在修真界搅风搅雨
一只二胖
别人修仙我氪金,大道之路,谁与争锋,看元初如何在修真界搅风搅雨,一路浪到仙界。
1.3万字8个月前
孤览杂记 连载中
孤览杂记
孤霄
这本书刊载着我与览星空的小说、散文、诗集等,青涩的文字中,是我们对文学的无比热忱,对生活的美好希冀,是所有情思与梦想的汇集……愿我们的作家们......
2.8万字8个月前
白璧无瑕只为卿 连载中
白璧无瑕只为卿
陌上的婷婷
[正文已完结,请放心食用]白无瑕,母亲取这名字便是希望我这一生白璧无瑕。只可惜是壁终究有瑕……本文主线女主,至于男主……好像不知道被忘到哪个......
10.8万字8个月前
失魂琴 连载中
失魂琴
夙夜风声
大唐商人通商月氏,却在刚刚抵达月氏境内时天象突变,巨大的雕刻着精美花纹的碎片从天而降,月氏一商人重金买下,其子却在手碰触到碎片后在众目睽睽之......
22.3万字8个月前
百妖记录薄 连载中
百妖记录薄
孟清殇
世间的妖怪无其不有,你又知道多少呢?ps:本书内容皆来自纪妖。
7.0万字8个月前