数学联邦政治世界观
超小超大

指标定理(二) (10-2)

Proof. We may assume that E is trivial when restricted to each simplex. We use induction. The result is clear on 0-skeleton. Suppose now we have F|ᴇᵏ:Eᵏ=π⁻¹(Bᵏ) → EG. For a (k +1)-simplex σ of B,F|π⁻¹(∂σ) is determined by F|∂σ×e:∂σ × e → E. Since EG is homotopically trivial,F|∂σ×e can be extended to F|σ×e,and then to F|π⁻¹(σ) by G-equivariance. ▢

Such a bundle is called the universal G-bundle,and BG is called the classifying space of G.

Also,the map defined above is determined up to homotopy. Given two homomor-phisms F₀,F₁:E → EG,consider the bundle l × E → I × G. F₀,F₁ gives a map ∂l × E → EG,so we can extend the map to l × E → EG as above.

Write P(B,G) for the collection of (isomorphism classes of) principal G-bundles over B. By the discussion above we have a surjective mapping

P(B,G) → [B,BG].

Indeed it’s bijective,and this is why BG is called the classifying space. Bijectivity is proved using covering homotopy property.

If there is another universal G-bundle E'G → B'G,there are induced maps f:BG → B'G,g:B'G → BG such that fg,gf are homotopic to identity. Thus the classifying space,if exists,is determined up to homotopy equivalence. In particular,H*(BG;R) is completely determined.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

你好!!!!! 连载中
你好!!!!!
燕若琪
!!
0.1万字6个月前
无聊的时候写写(不想看别看) 连载中
无聊的时候写写(不想看别看)
蛇院沐宸
内容很杂,不喜勿喷
1.7万字6个月前
辞渊之光 连载中
辞渊之光
szmkyyyy獩
“爱意随风起风止意难平”(已完结)“要做只属于你的月亮”“你喜欢我,就不要打我好不好?”“那你不听话怎么办”“口头教育一下就行……”“口头教......
8.0万字6个月前
快穿之替身女主 连载中
快穿之替身女主
小南风雪
在现实世界中死了的沈秋兰,和傻憨憨系统,穿越各个位面,回到现实世界的故事。在小世界里遇到了一位处处帮忙的男人,沈秋兰觉得无事献殷勤,非奸即盗......
20.8万字6个月前
浮生有梦:水中月 连载中
浮生有梦:水中月
轻紫凝烟
闷骚修仙继承人X娇俏人鱼小郡主“我会以你爱我的方式爱你。”“愿你梦醒之时,仍记得我。”
13.0万字6个月前
绝望十三号城市 连载中
绝望十三号城市
凭稍偶才
双男主[已签约]救赎遭遇变故的辛南栖,记忆被删除的伊斯维肆失去爱人的乔巷伞,被追杀的偏执审魔者五大术家的变故“我的圣天子,我永远忠于你”“我......
6.3万字6个月前