数学联邦政治世界观
超小超大

Sidorenko猜想 (2-2)

Sidorenko Conjecture:

∫ ∏ h(xᵢ,yⱼ)dμˢ⁺ᵗ ≥ (∫ hdμ²)ᵐ

(i,j)∈E

我们抛开上面那些复杂的数学语言和形式,Sidorenko猜想本身是极其美丽的。注意到,我们要考虑的问题本身是,给定一个二部图 H ,我们想知道在一个给定点数 n 和边密度 p 的图 G 里,能包含这个结构图 H 的数目最小值是多少? Sidorenko猜想是说,当 G 是一个给定边密度的随机图的时候,结构图 H的数目在渐近意义下是最小的。

下面介绍一些已知的结果。

1. Sidorenko本人在1993年证明了当 H 是完全二部图 Kₛ,ₜ ,偶圈 C₂ₖ ,树时,该猜想成立。

2. Hatami在2010年证明了Cube满足Sidorenko猜想。

3. 关于该猜想的第一个大突破来源于Conlon-Fox-Sudakov,他们证明了若 H 这个二部图中,存在一个点与另一部的点全部连边,那么这个 H 满足Sidorenko猜想,这篇文章与2010年发表在GAFA,从投稿到接收只用了1个月。他们利用的就是Dependent Random Choice(话说我发现用这个方法的paper有很大的概率能提高审稿人的阅读兴趣与审稿效率)。

4. 利用entropy method,Li和Szegedy证明了一个更大的图类reflection trees满足Sidorenko猜想。他们只要利用了logarithmic convexity inequalities。文章发表在Combinatorica。

5. Conlon,Kim,J.Lee 和C.Lee将4的结果推广到了更广的一些图,称之为tree-arrangeable graphs。有几篇文章发表在JLMS,Advance,Trans AMS等期刊

6. 最近,Conlon和它的博士生Lee研究了关于Subdivision of complete graph,证明了其也满足Sidorenko猜想。以及一些相关的新图类,文章发表在Discrete Analysis上。

7. 我在梦里幻想过我证完了这个猜想,不知道是不是真的。

哈代曾经说过,There is no permanent place in the world for ugly mathematics。我感觉Sidorenko猜想本身就是个非常beautiful的猜想。关于这个猜想,我想任何的进展都会被认为是improtant的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

重生之绝色御灵师 连载中
重生之绝色御灵师
知沐若雨
社畜若南汐在做饭时被自己炸死重生到异世。还没有来得及高兴发现自己重生成一个婴儿还被追杀。未来还有一个更大的秘密在等着她去探寻……
29.5万字1年前
桃子峰上的修仙笔记 连载中
桃子峰上的修仙笔记
林氏芸菡
单元剧,以个人为单位。每一个章节都是独立但有一定联系的。可以每一章当一个单独的故事看。纯原创。禁二创二改。
1.3万字1年前
屠星的日常发疯集 连载中
屠星的日常发疯集
屠星_Sl
关于作者大大疯了这件事
8.4万字1年前
逅邪甜苏 连载中
逅邪甜苏
柒零零
吸血鬼爱恋,超甜文。架空“我会永远坚定的选择你。”“我也是”
4.7万字1年前
凡骨 连载中
凡骨
伊榆契
从我出生的那一刻就注定不平凡,我并不知道自己的父母是谁,听师傅说我是被捡来的,直到我十四岁那年,我找到了我的至亲,但我父母的消息却毫无音讯…......
0.6万字1年前
萧薰儿 连载中
萧薰儿
染南风
由网络作家天蚕土豆创作的玄幻作品於生的同人作品。一朝出世,天赋异禀。不在乎宵小之徒的冷嘲热讽。没有人一开始就是废物,区别废物的,是付出的血泪......
3.1万字1年前