数学联邦政治世界观
超小超大

Sidorenko猜想 (2-2)

Sidorenko Conjecture:

∫ ∏ h(xᵢ,yⱼ)dμˢ⁺ᵗ ≥ (∫ hdμ²)ᵐ

(i,j)∈E

我们抛开上面那些复杂的数学语言和形式,Sidorenko猜想本身是极其美丽的。注意到,我们要考虑的问题本身是,给定一个二部图 H ,我们想知道在一个给定点数 n 和边密度 p 的图 G 里,能包含这个结构图 H 的数目最小值是多少? Sidorenko猜想是说,当 G 是一个给定边密度的随机图的时候,结构图 H的数目在渐近意义下是最小的。

下面介绍一些已知的结果。

1. Sidorenko本人在1993年证明了当 H 是完全二部图 Kₛ,ₜ ,偶圈 C₂ₖ ,树时,该猜想成立。

2. Hatami在2010年证明了Cube满足Sidorenko猜想。

3. 关于该猜想的第一个大突破来源于Conlon-Fox-Sudakov,他们证明了若 H 这个二部图中,存在一个点与另一部的点全部连边,那么这个 H 满足Sidorenko猜想,这篇文章与2010年发表在GAFA,从投稿到接收只用了1个月。他们利用的就是Dependent Random Choice(话说我发现用这个方法的paper有很大的概率能提高审稿人的阅读兴趣与审稿效率)。

4. 利用entropy method,Li和Szegedy证明了一个更大的图类reflection trees满足Sidorenko猜想。他们只要利用了logarithmic convexity inequalities。文章发表在Combinatorica。

5. Conlon,Kim,J.Lee 和C.Lee将4的结果推广到了更广的一些图,称之为tree-arrangeable graphs。有几篇文章发表在JLMS,Advance,Trans AMS等期刊

6. 最近,Conlon和它的博士生Lee研究了关于Subdivision of complete graph,证明了其也满足Sidorenko猜想。以及一些相关的新图类,文章发表在Discrete Analysis上。

7. 我在梦里幻想过我证完了这个猜想,不知道是不是真的。

哈代曾经说过,There is no permanent place in the world for ugly mathematics。我感觉Sidorenko猜想本身就是个非常beautiful的猜想。关于这个猜想,我想任何的进展都会被认为是improtant的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

轻穿兽世:我成了大佬们的心尖宠 连载中
轻穿兽世:我成了大佬们的心尖宠
烛毒北北啊
【穿越兽世+轻快甜宠+辅助性系统+1Vn,雄竞,双洁,非女强,非圣母,无脑爽】顾轻轻因为前男友因爱生恨而车祸身亡,一朝穿越,竟然到了兽人世界......
2.6万字6个月前
追求的真相 连载中
追求的真相
冬日里的春风_
生灵的希望是神明,神明的希望是远方,海洋的归宿是深渊,死后的灵魂何时漂向远方“我寻找的她,究竟是谁”
0.2万字6个月前
快穿之反派boss的白月光 连载中
快穿之反派boss的白月光
云中月皎皎
第一个世界(完):把温柔哥哥撩到手了第二个世界(完):那个将军在替我守墓第三个世界(完):在末世我抱紧了大腿第四个世界(完):我是被偷换的真......
28.9万字6个月前
喜儿一一抛弃 连载中
喜儿一一抛弃
叶叶随风飘
喜羊羊被朋友和父母抛弃了,后面的我就不说了。
3.4万字6个月前
刺客伍六七柒的妹妹 连载中
刺客伍六七柒的妹妹
抱抱软熊
话不多说自己看
0.4万字6个月前
顾上云间 连载中
顾上云间
番茄非西红柿
  当你在意的一切都被毁了时,你会如何?  当你为了变强不择手段时,你可曾记得初衷?  当你成为人人崇拜且惧怕的人时,你又是何心情?  当你......
4.5万字6个月前