数学联邦政治世界观
超小超大

Kronecher定理 (2-1)

1.若θ ∈ ℝ – ℚ,α ∈ [0,1), 则 ∀ϵ>0,∃n ∈ ℤ,s.t│<ϵ.

引理:

∀x,y ∈ ℝ,0 ≤ α {x}+b{y}<1 ⇒ α{x}+b{y}={αx+by}.

引理证明:

x=[x]+(x),y=[y]+{y} ⇒ αx+by=(α[x]+b[y])+(α{x}+b{y})

因为(α[x]+b[y]) ∈ ℤ,且 0 ≤ (α{x}+b{y})<1,所以 α{x}+b{y}={αx+by}.

证明:对于序列{{kθ}}⁺∞ ₖ₌₋∞ ,断言 ∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ} .

否则反设{k₁θ}={k₂θ} ,则 k₁θ – k₂θ=k ∈ ℤ

k

⇒ θ = ─── ∈ ℚ.

k₁ – k₂

矛盾,故

∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ}.

1 1 2

[0,1)=[0,─ )∪[ ─,─ )∪ · · · ∪[0,1)

n n n

因为{{kθ}}ⁿ⁺¹ₖ₌₁ 中各项两两不相等,所以由抽屉原理可以得 ∃n₁,n₂ ∈ {1,2,· · ·,n+1}

1

,n₁ ≠ n₂,s.t.丨{n₁θ} – {n₂θ}<─.

n

令 d=|{n₁θ} – {n₂θ}|,则 ∀ϵ>0

1 1

,∃N=mαx{[─],[───]} ∈ ℕ,

2ϵ 2(1 – α)

[公式]

1

|l|{n₁θ} – {n₂θ} | – α|<─ ⇒ l|{n₁θ} – {n₂θ}

2n

1

│<─+α<1.

2n

i.当l=0 时: |α|<ϵ.

∀ϵ>0,∃0 ∈ ℤ,s.t|{0θ} – α|<ϵ.

ii.当l ≠ 0 时:由引理可得

{{l(n₁ – n₂)θ},{n₁θ}>{n₂θ},

l|{n₁θ} – {n₂θ}│= :={lmθ}.

{l(n₂ – n₁)θ},{n₂θ}>{n₁θ}.

|{lmθ} – α|<ϵ,lm ∈ ℤ.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

语录摘抄(神仙语句) 连载中
语录摘抄(神仙语句)
且寄白鹿间
沉伦锦年只如初见,岁月静好生生欢颜。一些值得摘抄神仙语句以及文案哦~题材不限有什么想看的也可以告诉我哦~\(≧▽≦)/~
7.2万字12个月前
钢铁飞龙:深蓝的小妹 连载中
钢铁飞龙:深蓝的小妹
月清初
想更新的时候就更,我就是懒
4.8万字12个月前
暗黑十三星 连载中
暗黑十三星
夏咏初
蛇夫把她的脸按在地上摩擦,她原地发疯:“我既没杀你爸又没杀你妈,你凭什么杀我!”起因是星空破碎,蛇夫带着八十七个本体造反。无奈之下,天蝎坠落......
63.4万字12个月前
追妻路慢之二小姐太冷淡 连载中
追妻路慢之二小姐太冷淡
玖梧
【本文双洁,绝宠,1V1】【神妄文社】想要把人拐回自己的窝,并不是件容易的事,这一点,某人身有体会。灵力高强的岳父:“小子,你TM半夜再来翻......
18.9万字12个月前
爆裂飞车之昭岚的爱河 连载中
爆裂飞车之昭岚的爱河
昭岚永恒
主昭岚昭岚永恒玄幻言情
0.3万字12个月前
快穿,攻略目标性格太过百变 连载中
快穿,攻略目标性格太过百变
乔乔不吃鸭
风浅和南弦同为位面管理者,却因争夺管理站,南弦灵魂分裂散入三千界,风浅则投胎成了普通人,记忆也遗失了,系统意外绑定风浅,攻略各类boss,是......
3.3万字12个月前