数学联邦政治世界观
超小超大

Kronecher定理 (2-1)

1.若θ ∈ ℝ – ℚ,α ∈ [0,1), 则 ∀ϵ>0,∃n ∈ ℤ,s.t│<ϵ.

引理:

∀x,y ∈ ℝ,0 ≤ α {x}+b{y}<1 ⇒ α{x}+b{y}={αx+by}.

引理证明:

x=[x]+(x),y=[y]+{y} ⇒ αx+by=(α[x]+b[y])+(α{x}+b{y})

因为(α[x]+b[y]) ∈ ℤ,且 0 ≤ (α{x}+b{y})<1,所以 α{x}+b{y}={αx+by}.

证明:对于序列{{kθ}}⁺∞ ₖ₌₋∞ ,断言 ∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ} .

否则反设{k₁θ}={k₂θ} ,则 k₁θ – k₂θ=k ∈ ℤ

k

⇒ θ = ─── ∈ ℚ.

k₁ – k₂

矛盾,故

∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ}.

1 1 2

[0,1)=[0,─ )∪[ ─,─ )∪ · · · ∪[0,1)

n n n

因为{{kθ}}ⁿ⁺¹ₖ₌₁ 中各项两两不相等,所以由抽屉原理可以得 ∃n₁,n₂ ∈ {1,2,· · ·,n+1}

1

,n₁ ≠ n₂,s.t.丨{n₁θ} – {n₂θ}<─.

n

令 d=|{n₁θ} – {n₂θ}|,则 ∀ϵ>0

1 1

,∃N=mαx{[─],[───]} ∈ ℕ,

2ϵ 2(1 – α)

[公式]

1

|l|{n₁θ} – {n₂θ} | – α|<─ ⇒ l|{n₁θ} – {n₂θ}

2n

1

│<─+α<1.

2n

i.当l=0 时: |α|<ϵ.

∀ϵ>0,∃0 ∈ ℤ,s.t|{0θ} – α|<ϵ.

ii.当l ≠ 0 时:由引理可得

{{l(n₁ – n₂)θ},{n₁θ}>{n₂θ},

l|{n₁θ} – {n₂θ}│= :={lmθ}.

{l(n₂ – n₁)θ},{n₂θ}>{n₁θ}.

|{lmθ} – α|<ϵ,lm ∈ ℤ.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

为你谨慎是我的本能 连载中
为你谨慎是我的本能
俞木逢朝向阳生
游瑾㐅秦谂“我叫蒋簌桐。”“你好啊,小游瑾。”“我好像认识你……”“不要!别走!”【程序错误!程序错误!重启!重启!】“这是怎么回事?”“游......
4.5万字1年前
凌阳冰宸 连载中
凌阳冰宸
倾宸雨
《凌阳冰宸》2,火热更新中!神明故事,古装玄幻爽文,大女主,女强甜宠文。女主有完整的事业线,霸气十足,文武双全,绝色战神,男主恋爱脑,绝世帅......
65.1万字1年前
异世界魔法学院 连载中
异世界魔法学院
白彦雨的星罗猫
我只想有人能真正的在乎我
20.9万字1年前
魔女人偶店 连载中
魔女人偶店
沈皎菡
一个绝对不可能信唯物主义的女主一直在告诉你:不要迷信,相信科学裴荔栀:求求了,真的别迷信!相信科学啊亲
5.1万字1年前
无法诉说的别离 连载中
无法诉说的别离
酸辣豆包
这是场来不及挥手的离别,这是场猝不及防的相遇。“我爱她,我要遵守我的承诺!”“你的眼神也变的和她一样了......”“这场雪下完后,我不会再......
18.5万字1年前
师尊求你放过我的裤子 连载中
师尊求你放过我的裤子
月不叫七
无男主+搞笑】弟子1:“你听说了吗,今天师尊把掌门的裤子扯下来了。”弟子2:“听说了听说了,师尊还因为这件事情被掌门下令一年后收一个弟子呢。......
1.9万字1年前