数学联邦政治世界观
超小超大

Kronecher定理 (2-1)

1.若θ ∈ ℝ – ℚ,α ∈ [0,1), 则 ∀ϵ>0,∃n ∈ ℤ,s.t│<ϵ.

引理:

∀x,y ∈ ℝ,0 ≤ α {x}+b{y}<1 ⇒ α{x}+b{y}={αx+by}.

引理证明:

x=[x]+(x),y=[y]+{y} ⇒ αx+by=(α[x]+b[y])+(α{x}+b{y})

因为(α[x]+b[y]) ∈ ℤ,且 0 ≤ (α{x}+b{y})<1,所以 α{x}+b{y}={αx+by}.

证明:对于序列{{kθ}}⁺∞ ₖ₌₋∞ ,断言 ∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ} .

否则反设{k₁θ}={k₂θ} ,则 k₁θ – k₂θ=k ∈ ℤ

k

⇒ θ = ─── ∈ ℚ.

k₁ – k₂

矛盾,故

∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ}.

1 1 2

[0,1)=[0,─ )∪[ ─,─ )∪ · · · ∪[0,1)

n n n

因为{{kθ}}ⁿ⁺¹ₖ₌₁ 中各项两两不相等,所以由抽屉原理可以得 ∃n₁,n₂ ∈ {1,2,· · ·,n+1}

1

,n₁ ≠ n₂,s.t.丨{n₁θ} – {n₂θ}<─.

n

令 d=|{n₁θ} – {n₂θ}|,则 ∀ϵ>0

1 1

,∃N=mαx{[─],[───]} ∈ ℕ,

2ϵ 2(1 – α)

[公式]

1

|l|{n₁θ} – {n₂θ} | – α|<─ ⇒ l|{n₁θ} – {n₂θ}

2n

1

│<─+α<1.

2n

i.当l=0 时: |α|<ϵ.

∀ϵ>0,∃0 ∈ ℤ,s.t|{0θ} – α|<ϵ.

ii.当l ≠ 0 时:由引理可得

{{l(n₁ – n₂)θ},{n₁θ}>{n₂θ},

l|{n₁θ} – {n₂θ}│= :={lmθ}.

{l(n₂ – n₁)θ},{n₂θ}>{n₁θ}.

|{lmθ} – α|<ϵ,lm ∈ ℤ.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

一直都知道 连载中
一直都知道
社恐同学.
这部作品讲述是“我”生活在一个小县城里,有一个时好时坏的原生家庭,不理想的成绩,糟糕的社交,一个互相喜欢的人,因为家庭的原因,“我”一直否定......
0.8万字11个月前
还珠格格之乾燕子 连载中
还珠格格之乾燕子
游客1571816434907
这人很懒,啥都没写。
0.1万字11个月前
修仙女配只想苟到结局 连载中
修仙女配只想苟到结局
北杏子
在苏若的问题上,萧禹晟从来没有过选择。自从五岁时苏若在禁闭室里给他带来那块红枣酥后,他早就对这个冤家输了个一文不剩了。这就是本憨憨女主和憨憨......
10.0万字11个月前
永恒的第一次——瑞楠之约 连载中
永恒的第一次——瑞楠之约
粱瑞
因为闪闪发光的他们而努力,又甜又虐一切的一切都是我编的,有一些情节是看快手上看到的觉得喜欢就会放在小说里,请勿上真人因为我自己就很喜......
14.2万字11个月前
历史直播:我用天幕帮古人改变未来 连载中
历史直播:我用天幕帮古人改变未来
开心的白色糖果
沈清灵本是一个初入社会的大学生,系统的到来却让她枯燥的生活变得有意思起来它让她用天幕改变历史!当嬴政知道大秦会二世而亡后:胡亥,赵高,你们当......
0.4万字11个月前
皇的第四子——克里斯耶丽阿娜 连载中
皇的第四子——克里斯耶丽阿娜
台上人唱着心碎离别歌
2.0万字11个月前