数学联邦政治世界观
超小超大

实数(二) (5-2)

我们在这篇文章里面不会讨论算术系统或者有理数的构造,并且默认大家对于整数和有理数的性质都十分地熟悉。在这里我们提醒大家有理数满足确界原理以外的上述所有公理,从而是一个有序域。而整数则满足(A1)~(A4),(M1)~(M3)与(D),从而是一个整环。下一部分的构造将会从有理数开始。

ll.实数的构造

在这一节中,如果没有特别说明,小写拉丁字母总是表示有理数。我们先给出分划的定义,即

定义1.有理数集的一个分划是有理数的一个子集 α ,满足

(C1)α ≠ ℚ ,且 α 没有最大元素;

(C2)对于任意r∈α ,存在 s∈α 使得 r<s ;

(C3)如果s<r 且 r∈α ,那么有 s∈α 。

我们记全体分划的集合为ℝ*。直观地来看,一个分划就是实数集上的一个开区间 (–∞,α) ,不过我们不想去验证这一点。

对于分划,我们可以定义序关系

定义2. α ≤ β ⇔ α ⊂ β

容易验证这个序关系是合理的,从而我们得到了全序集(ℝ*,≤) 。

命题1.全序集 (ℝ*,≤) 具有最小上界性。

证明.设 A ⊂ ℝ* 是一族分划,且 A 上有界。考虑 A 中所有元素的并

σ=∪α

α∈A

断言σ=sup A 。为此,我们先验证 σ∈ℝ* ,这是因为:

(C1)由于 A 上有界,所以 σ ≠ ℚ ,且显然 σ 没有最大元素(否则构成 σ 的某个分划就有最大元素了);

(C2)对于任意r∈σ ,存在一个 α∈A 使得 r∈α,由(C2)可以取一个 s∈α ⊂ σ 使得 r<s ;

(C3) 对于任意 r∈σ ,存在一个 α∈A 使得 r∈α,那么满足 s<r 的 s∈α ⊂ σ 。

显然σ 是 A 的上界,并且对于任意一个 β<σ ,由序关系的定义可知存在一个 t∈σ 且 t ∉ β ,那么一定有一个 α∈A 包含 t ,从而 β ⊂ α,β ≠ α 即 β<α , β 不是 A 的上界。

在证明了ℝ* 是具有最小下界性的有序集之后,我们为 ℝ* 定义加法与乘法,并证明我们定义的加法与乘法可以使 ℝ* 成为具有最小下界性的有序域。

我们定义+: ℝ* × ℝ* → ℝ* 将 (α,β) 映为 α+β={r+s|r∈α,s∈β},显然这个像是一个分划,从而映射的定义是合理的。以下我们逐一验证加法公理:

命题2.加法运算满足加法公理(A1)~(A4)。

证明.(A1)、(A2)按定义来看是显然的;

(A3)我们定义ˉ0={r|r<0} ,注意到对任意 α∈ℝ* 与 s∈α ,任取 r<0 总有

r+s<s

从而r+s∈α,由 r,s 的任意性可以得到 α+ˉ0 ⊂ α 。又对于任意的 s∈α ,按(C2)取 t∈α,t>s,于是对于

s – t

──<0 有

2

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我在修仙界里内卷成神 连载中
我在修仙界里内卷成神
风竹肆
[神级空间+团宠+强强联合+后期成神]一个是神界第一美男,拥有绝世俊美无双的光明至高之神仙帝一个是魔界第一美男子,拥有绝色妖魅,能魅惑世间的......
1.6万字4周前
天灵界水凉 连载中
天灵界水凉
波圈up-北良
作者试水
0.1万字1个月前
浩桐传 连载中
浩桐传
小暗斗狼
“雨浩。从现在开始,我就是你的妻子了。无论你的伤能不能好起来,我永远都是你的妻子。那个契约,我很喜欢呢。你活着,我会照顾你一辈子。如果你死了......
2.4万字4周前
当alpha穿越到异世界的二三事 连载中
当alpha穿越到异世界的二三事
宇宙逃逸者時肆
江月从21世纪娇滴滴的白幼瘦变成星际社会的Alpha后,很长一段时间都无法适应身份的转变江月和她的室友们非常倒霉穿越到异世界遇到了各方大佬揍......
31.2万字4周前
航猪意外黑化 连载中
航猪意外黑化
芳心和三郎
妈妈说过,透剧的不是好孩子。
1.2万字4周前
公主大人,你又闯祸了 连载中
公主大人,你又闯祸了
等候风的约定
‘陛下,公主说您的后宫太乱了。’‘所以呢?’带着磁性的嗓音响起。‘所以公主大人将您的后宫给炸了。’男子低着头不敢去看他的神情。……女子的美眸......
6.8万字4周前