数学联邦政治世界观
超小超大

连续函数的有界定理与最值定理 (7-1)

目录

连续函数 ▹

有界 ▹

有界性定理(Weierstrass第一定理)▹

(一)使用Bolzano-Weierstrass定理 ▹

(二)使用Heine-Borel-Lebesgue有限覆盖定理(一)▹

(三)使用Heine-Borel-Lebesgue有限覆盖定理(二)▹

(四)使用Cauchy-Cantor闭区间套定理 ▹

最值 ▹

最值定理(Weierstrass第二定理)▹

(一)使用Cantor确界存在定理 ▹

(二)使用Bolzano-Weierstrass定理 ▹

(三)使用Heine-Borel-Lebesque有限覆盖定理 ▹

连续函数

设f:X → ℝ 是定义在实数域 ℝ 的子集 [公式]X 上的函数,称函数 f 在某一点 x₀∈X

连续,是指:

对任意给定的ε>0 ,存在一个 δ>0 ,使得对一切 x∈X ,当其满足不等式

|x – x₀|<δ的时候,

均有

|f(x) – f(x₀)|<ε

对于绝大部分情况,当点x₀ ∈ X 不是孤立点而是集合 X 的极限点时候,函数 f

在点x₀ ∈ X 处连续可以等价描述为:

lim f(x)=f(x₀)

x→x₀

有界

f:X → ℝ是定义在实数域 ℝ 的子集 Ⅹ 上的函数.

如果存在实数M ,使得对一切 x∈X 都有 f(x)≤M,则说函数 f 是有上界的;

如果存在实数M ,使得对一切 x∈X 都有 f(x)≥ –M,则说函数 f 是有下界的;

如果存在实数M ,使得对一切 x∈X 都有 |f(x)|≤M,则说函数 f 是有界的.

有界性定理(Weierstrass第一定理)

设实数α<b,设 f:[α,b] → ℝ 是定义在闭区间 [α,b] 上的连续函数.

那么 f 是有界函数,

也即存在着有限的常数m 和 M,使得当 x∈[α,b] 时

m ≤ f(x) ≤ M

原则上,从实数系的每个基本定理(及与之等价的命题)都可以证明有界性定理,这里选取几种证明方法

证明:

(一)使用Bolzano-Weierstrass定理

设函数f 在闭区间 [α,b] 上无界

则对于每个正实数A ,都存在一个 x∈[α,b]

使得 |f(x)| ≥ A

所以对每个n∈ ℕ*,存在 x∈ [α,b]

使得 |f(x)| ≥ n

那么可以找到一个序列 {xₙ}⊂ [α,b](n∈ℕ* )

使得 |f(xₙ)| ≥ n

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

新帝 连载中
新帝
Wt.sn.
茵德安即将要登上皇位,可她并不想登上这人人都争的皇位。[可我并不想当王啊!想当王的是她!]可不管茵德安怎么喊这个王位终究给了她。卡丝令,是茵......
0.3万字1个月前
斗:彼岸重生 连载中
斗:彼岸重生
栀儿鸢兮
彼岸之花,尹桐儿的复仇之路
0.2万字4周前
杂文随机更新 连载中
杂文随机更新
青伊苗希
0.9万字4周前
我还爱着你1 连载中
我还爱着你1
聆旧忘
与你的点点滴滴
0.2万字4周前
隐界I之复神 连载中
隐界I之复神
朝幽暮曦
【已签约,禁转载】本来在自己的世界逍遥自在的朝寒暮璃意外在一次“交易”中被一缕孤魂拉到了异世,等懵逼完之后问清楚,她就发现她穿进了一本她在上......
50.4万字4周前
樱花之恋之死神的曼珠沙华 连载中
樱花之恋之死神的曼珠沙华
醉雨清风
樱花之恋是一个诅咒☠️,曼珠沙华是恶魔的温柔,若动情,则会体会到噬心之痛。爱而不得,千年之恋有爱陈情令?三生三世十里桃花的小可爱们吗?赶紧来......
18.7万字4周前