数学联邦政治世界观
超小超大

连续函数的有界定理与最值定理 (7-1)

目录

连续函数 ▹

有界 ▹

有界性定理(Weierstrass第一定理)▹

(一)使用Bolzano-Weierstrass定理 ▹

(二)使用Heine-Borel-Lebesgue有限覆盖定理(一)▹

(三)使用Heine-Borel-Lebesgue有限覆盖定理(二)▹

(四)使用Cauchy-Cantor闭区间套定理 ▹

最值 ▹

最值定理(Weierstrass第二定理)▹

(一)使用Cantor确界存在定理 ▹

(二)使用Bolzano-Weierstrass定理 ▹

(三)使用Heine-Borel-Lebesque有限覆盖定理 ▹

连续函数

设f:X → ℝ 是定义在实数域 ℝ 的子集 [公式]X 上的函数,称函数 f 在某一点 x₀∈X

连续,是指:

对任意给定的ε>0 ,存在一个 δ>0 ,使得对一切 x∈X ,当其满足不等式

|x – x₀|<δ的时候,

均有

|f(x) – f(x₀)|<ε

对于绝大部分情况,当点x₀ ∈ X 不是孤立点而是集合 X 的极限点时候,函数 f

在点x₀ ∈ X 处连续可以等价描述为:

lim f(x)=f(x₀)

x→x₀

有界

f:X → ℝ是定义在实数域 ℝ 的子集 Ⅹ 上的函数.

如果存在实数M ,使得对一切 x∈X 都有 f(x)≤M,则说函数 f 是有上界的;

如果存在实数M ,使得对一切 x∈X 都有 f(x)≥ –M,则说函数 f 是有下界的;

如果存在实数M ,使得对一切 x∈X 都有 |f(x)|≤M,则说函数 f 是有界的.

有界性定理(Weierstrass第一定理)

设实数α<b,设 f:[α,b] → ℝ 是定义在闭区间 [α,b] 上的连续函数.

那么 f 是有界函数,

也即存在着有限的常数m 和 M,使得当 x∈[α,b] 时

m ≤ f(x) ≤ M

原则上,从实数系的每个基本定理(及与之等价的命题)都可以证明有界性定理,这里选取几种证明方法

证明:

(一)使用Bolzano-Weierstrass定理

设函数f 在闭区间 [α,b] 上无界

则对于每个正实数A ,都存在一个 x∈[α,b]

使得 |f(x)| ≥ A

所以对每个n∈ ℕ*,存在 x∈ [α,b]

使得 |f(x)| ≥ n

那么可以找到一个序列 {xₙ}⊂ [α,b](n∈ℕ* )

使得 |f(xₙ)| ≥ n

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

修仙:小小炮灰她拿捏世界 连载中
修仙:小小炮灰她拿捏世界
白皖烟
0.1万字1个月前
漂亮炮灰翻车了 连载中
漂亮炮灰翻车了
路楼
简介正在更新
24.7万字4周前
快穿之虐文结局He 连载中
快穿之虐文结局He
该用户已注销
简介正在更新
4.6万字4周前
殊途:我要把你弄脏 连载中
殊途:我要把你弄脏
食人龟-
【已签约】刚满18岁的女主成希烈,突然发现自己看到了平常看不到的东西——妖怪。而自己最好的朋友尼尼,竟然也是妖怪?她的人生从此发生翻天覆地的......
16.0万字4周前
神兽金刚之请你爱我 连载中
神兽金刚之请你爱我
江酥瑶
邂逅,牵手都不算什么,你说你爱我,我不信,不过我爱你
1.0万字4周前
重生女帝:踩朕裙子了 连载中
重生女帝:踩朕裙子了
江向周今天更了吗
改名《凤谕天下》身陷火海竟然重生,大不同的性情让她开起逆袭之路,成为女帝管制天下,当初如此信任三哥可却又处处压制着他?竟不了消失多年的皇兄竟......
11.0万字4周前