数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

哥哥选我我超甜! 连载中
哥哥选我我超甜!
Ther.D
  于星为了给自己的合租室友报仇,不惜用女音和女装勾搭渣男,却在得手面基之后发现这个渣男竟然是自己的学弟……
0.5万字9个月前
乐公主在月球的…… 连载中
乐公主在月球的……
冷玥芙
乐公主与月公主在月球
0.6万字9个月前
三眼哮天录同人文 连载中
三眼哮天录同人文
缡心归戬1314
【已完结,原名《飒漫画同人文集》】【本文已签约,禁止转载!寻前,穿西,三眼,魔王,飒漫画所有的漫画都会更新的!】
21.2万字9个月前
流转萌园之圣源彼岸星力 连载中
流转萌园之圣源彼岸星力
一灼不变
她是圣源谕者,拥有世间最纯洁、强大的力量。一念成魔一念成神。情感才是世界上最残忍的东西。彼岸花开,开一千年,落一千年,花叶永不相见,情不问生......
7.8万字8个月前
花园宝宝:关于花园里的爱恨情仇 连载中
花园宝宝:关于花园里的爱恨情仇
玛卡巴卡的鸭梨
【关于一群非人生物的日常生活】
2.5万字8个月前
有女应龙 连载中
有女应龙
汀鸿宇
嗯…怎么说呢,本来想是攒够实力就去完成任务然后去征服星辰大海,但有了实力后就想养老了,觉得累了
3.8万字8个月前